铅笔

在你的害怕中坚持的越多,你就会越自信
  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

特征描述子

Posted on 2016-12-14 10:18  黑色の铅笔  阅读(2682)  评论(0编辑  收藏  举报

尺度:

我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的物体也总是通过不同尺度的观察而得到不同的变化。比如说,对同一物体拍照,我们拍摄了一副近景,一副远景,虽然两幅图片中都有这个物体,但这个物体确是处于两个不同的尺度。

尺度值可用于定义围绕特征点的窗口大小,不论物体的尺度在窗口是什么样的,都将包含相同的视觉信息,这些信息用于表示特征点以使得他们与众不同。

图像的尺度有多种表示方法(金字塔、八叉树等等),在SIFT中Lowe教授采用了尺度空间理论。其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,并检测这个序列中的关键点。这样图片就被映射为多个尺度上的关键点信息,尽管两幅图片是处于不同的尺度,但却可以提取出在尺度变换中没有改变的关键点,从而进行关键点匹配,进而识别出物体。

 

特征描述子

 

物体识别的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相相匹配。而为了进行匹配,我们首先要合理的表示图像。由于目标的自身状态、场景所处的环境的影响,同一类物体在不同的图像中所成的像往往会差别很大,但即使这样,人们所能通过同一物体的一些局部共性来识别出物体(正如我们能将不同国家民族的人区分出来)。所谓局部特征描述子就是用来刻画图像中的这些局部共性的,而我们也可以将一幅图像映射(变换)为一个局部特征的集合。理想的局部特征应具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影影响也应有很好的鲁棒性。传统的局部特征往往是直接提取角点或边缘,对环境的适应能力较差。1999年British Columbia大学 David G.Lowe 教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。

在特征匹配中,特征描述子通常是用于N维向量,在光照不变以及少许透视变形的情况下很理想。另外,优质的描述子可以通过简单的距离测量进行比较,比如欧氏距离。

如我们想匹配同一个场景中的两幅图像。首先,我们检测每幅图像中的特征,然后提取他们的描述子。第一幅图像中的每一个特征描述子向量都会与第二幅图中的描述子进行比较,得分最高的一对描述子,也就是两个向量的距离最近,将被视为那个特征的最佳匹配。

 

参考: 

http://blog.sina.com.cn/s/blog_4bdb170b0101hkjk.html

http://blog.csdn.net/poem_qianmo/article/details/33320997

http://blog.csdn.net/abcjennifer/article/details/7639681