三 Hive 数据处理 自定义函数UDF和Transform
三 Hive 自定义函数UDF和Transform
开篇提示:
快速链接beeline的方式:
./beeline -u jdbc:hive2://hadoop1:10000 -n hadoop
1.自定义函数UDF
当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)
UDF 作用于单个数据行,产生一个数据行作为输出。(数学函数,字符串函数)
2开发实例
2.1 原始数据格式
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"} {"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"} {"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"} {"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"} {"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"} {"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"} {"movie":"1287","rate":"5","timeStamp":"978302039","uid":"1"} {"movie":"2804","rate":"5","timeStamp":"978300719","uid":"1"} {"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"} {"movie":"919","rate":"4","timeStamp":"978301368","uid":"1"} {"movie":"595","rate":"5","timeStamp":"978824268","uid":"1"} {"movie":"938","rate":"4","timeStamp":"978301752","uid":"1"}
2.2 创建数据表
create table t_rating (line string)
row format delimited;
2.3 导入数据
load data local inpath '/home/hadoop/rating.json' into table t_rating;
2.4 开发UDF程序
package cn.itcast.hive; import org.apache.hadoop.hive.ql.exec.UDF; import org.codehaus.jackson.map.ObjectMapper; /** * @author ntjr * 解析json数据 * */ public class PaserJson extends UDF { private ObjectMapper mapper = new ObjectMapper(); public String evaluate(String line) { try { RatingBean ratingBean = mapper.readValue(line, RatingBean.class); return ratingBean.toString(); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } return ""; } }
用于解析t_rating表中每一行的json数据。
package cn.itcast.hive; public class RatingBean { private String movie; private String rate; private String timeStamp; private String uid; public String getMovie() { return movie; } public void setMovie(String movie) { this.movie = movie; } public String getRate() { return rate; } public void setRate(String rate) { this.rate = rate; } public String getTimeStamp() { return timeStamp; } public void setTimeStamp(String timeStamp) { this.timeStamp = timeStamp; } public String getUid() { return uid; } public void setUid(String uid) { this.uid = uid; } @Override public String toString() { return movie + "\t" + rate + "\t" + timeStamp + "\t" + uid; } }
2.4将udf程序打成jar 导入hive
add JAR /home/hadoop/udf.jar;
2.5 创建临时函数与开发好的udf进行关联
create temporary function paseJson as 'cn.itcast.hive.PaserJson';
2.6 创建完整字段的t_rating02表(用于存放将单列json数据表t_rating转换成多列数据表t_rating02的结果)
create table t_rating02 as select split(paseJson(line),'\t')[0] as movieid, split(paseJson(line),'\t')[1] as rate, split(paseJson(line),'\t')[2] as timestring, split(paseJson(line),'\t')[3] as uid from t_rating;
至此:完成字段表t_rating02转换完成。
3.利用Transfrom将t_rating02表中的timestring字段转换成周几的形式。
3.1 t_rating02中的样式:
3.2编写weekday_mapper.py脚本,处理t_rating02表中的timestring字段
#!/bin/python import sys import datetime for line in sys.stdin: line = line.strip() movieid, rating, unixtime,userid = line.split('\t') weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print '\t'.join([movieid, rating, str(weekday),userid])
3.3 上传weekday_mapper.py脚本,前提是保证本机装有python
add FILE weekday_mapper.py;
3.4 创建新表t_rating_date,保存脚本处理后的数据
create TABLE t_rating_date as SELECT TRANSFORM (movieid , rate, timestring,uid) USING 'python weekday_mapper.py' AS (movieid, rating, weekday,userid) FROM t_rating02;
3.5查看t_rating_date表
至此将json数据转换成数据表。