两种形式的dma 实现memory copy代码

在飞思卡尔的时候,需要用SDMA实现内存到内存memory copy的功能,需要做两部分的工作:

1:在DMA controller中加入M2M的支持。

2:写一个驱动来调用DMA controller的M2M功能。

上面的2实际上对于不同的SoC来讲,思路是一样的,有通用性,在这里总结下。

当时在实现的时候,用了两种方法:

1:cyclic, 用dma_alloc_coherent分配两段dma 内存空间, 一段做src, 一段做dst. 调用DMA controller接口来将src中的数据往dst中拷贝。因为DMA操作的是物理内地址上连续的内存空间,dma_alloc_coherent分配不了太大的连续物理地址空间,所以,仅仅能实现小批量数据的M2M拷贝。

2:sg, 用dma_alloc_coherent分配很多段dma 内存空间,一半大小的空间做src,一半大小的空间做dst.通过device_prep_dma_sg来将各自独立的src/dst空间链接起来。这个,可以将若干段分散的物理地址链接成逻辑上连续的,可以实现较大数据的拷贝。

顺便复习下dma engine的用法:
复制代码
Linux/Documentation/dmaengine.txt

 The slave DMA usage consists of following steps:
 1. Allocate a DMA slave channel
2. Set slave and controller specific parameters
3. Get a descriptor for transaction
4. Submit the transaction
5. Issue pending requests and wait for callback notification

1. Allocate a DMA slave channel

    Interface:
        struct dma_chan *dma_request_channel(dma_cap_mask_t mask,
                        dma_filter_fn filter_fn,
                        void *filter_param);


2. Set slave and controller specific parameters

    Interface:
         int dmaengine_slave_config(struct dma_chan *chan,
                                  struct dma_slave_config *config)


3. Get a descriptor for transaction

   Interface:
       struct dma_async_tx_descriptor *(*chan->device->device_prep_slave_sg)(
               struct dma_chan *chan, struct scatterlist *sgl,
                unsigned int sg_len, enum dma_data_direction direction,
                unsigned long flags);

       struct dma_async_tx_descriptor *(*chan->device->device_prep_dma_cyclic)(
                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
               size_t period_len, enum dma_data_direction direction);

       struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
               struct dma_chan *chan, struct dma_interleaved_template *xt,
               unsigned long flags);


4. Submit the transaction

    Interface:
        dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)

5. Issue pending DMA requests and wait for callback notification

   Interface:
        void dma_async_issue_pending(struct dma_chan *chan);
复制代码

 




传输结束的时候可以用:

1. int dmaengine_terminate_all(struct dma_chan *chan)


看下面代码:

1: cyclic方式实现

复制代码
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mman.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <mach/dma.h>

#include <linux/dmaengine.h>
#include <linux/device.h>

#include <linux/io.h>
#include <linux/delay.h>

static int gMajor; //major number of device
static struct class *dma_tm_class;
static char *wbuf;
static char *rbuf;
static dma_addr_t wpaddr;
static dma_addr_t rpaddr;

struct dma_chan *dma_m2m_chan;

struct completion dma_m2m_ok;

#define SDMA_BUF_SIZE  1024

static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
    if (!imx_dma_is_general_purpose(chan))
        return false;
    chan->private = param;
    return true;
}

int sdma_open(struct inode * inode, struct file * filp)
{
    dma_cap_mask_t dma_m2m_mask;
    struct imx_dma_data m2m_dma_data = {0};


    init_completion(&dma_m2m_ok);    


    dma_cap_zero(dma_m2m_mask);
    dma_cap_set(DMA_SLAVE, dma_m2m_mask);
    m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
    m2m_dma_data.priority = DMA_PRIO_HIGH;
    
    dma_m2m_chan = dma_request_channel(dma_m2m_mask, dma_m2m_filter, &m2m_dma_data);
    if (!dma_m2m_chan) {
        printk("Error opening the SDMA memory to memory channel\n");
        return -EINVAL;
    }


    wbuf = dma_alloc_coherent(NULL, SDMA_BUF_SIZE, &wpaddr, GFP_DMA);
    rbuf = dma_alloc_coherent(NULL, SDMA_BUF_SIZE, &rpaddr, GFP_DMA);


    return 0;
}

int sdma_release(struct inode * inode, struct file * filp)
{
    dma_release_channel(dma_m2m_chan);
    dma_m2m_chan = NULL;
    dma_free_coherent(NULL, SDMA_BUF_SIZE, wbuf, wpaddr);
    dma_free_coherent(NULL, SDMA_BUF_SIZE, rbuf, rpaddr);


    return 0;
}

ssize_t sdma_read (struct file *filp, char __user * buf, size_t count, loff_t * offset)
{
    int i;
    
    wait_for_completion(&dma_m2m_ok);
    for (i=0; i<SDMA_BUF_SIZE; i++) {
    printk("src_data_%d = %x\n",i, *(wbuf+i) );
    }
    for (i=0; i<SDMA_BUF_SIZE; i++) {
    printk("dst_data_%d = %x\n",i, *(rbuf+i) );
    }
    
    return 0;
}

static void dma_m2m_callback(void *data)
{
    printk("in %s\n",__func__);
    complete(&dma_m2m_ok);
    return ;
}

ssize_t sdma_write(struct file * filp, const char __user * buf, size_t count, loff_t * offset)
{
    u32 *index1;
    struct dma_slave_config dma_m2m_config;
    struct dma_async_tx_descriptor *dma_m2m_desc;
    int i;
    index1 = wbuf;
    for (i=0; i<SDMA_BUF_SIZE; i++) {
        *(index1 + i) = 0x12345678;
    }

    for (i=0; i<SDMA_BUF_SIZE; i++) {
    printk("%d : %x\n",i, *(wbuf+i) );
    }

    dma_m2m_config.direction = DMA_MEM_TO_MEM;
    dma_m2m_config.dst_addr = rpaddr;
    dma_m2m_config.src_addr = wpaddr;
    dma_m2m_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
    dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
    dma_m2m_config.dst_maxburst = 4;
    dma_m2m_config.src_maxburst = 4;
    dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config);
    dma_m2m_desc = dma_m2m_chan->device->device_prep_dma_cyclic(
                    dma_m2m_chan, NULL, SDMA_BUF_SIZE, SDMA_BUF_SIZE/2, DMA_MEM_TO_MEM);
    dma_m2m_desc->callback = dma_m2m_callback;
    dmaengine_submit(dma_m2m_desc);
    return 0;
}

struct file_operations dma_fops = {
    open:        sdma_open,
    release:    sdma_release,
    read:        sdma_read,
    write:        sdma_write,
};

int __init sdma_init_module(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
    struct device *temp_class;
#else
    struct class_device *temp_class;
#endif
    int error;


    /* register a character device */
    error = register_chrdev(0, "sdma_test", &dma_fops);
    if (error < 0) {
        printk("SDMA test driver can't get major number\n");
        return error;
    }
    gMajor = error;
    printk("SDMA test major number = %d\n",gMajor);


    dma_tm_class = class_create(THIS_MODULE, "sdma_test");
    if (IS_ERR(dma_tm_class)) {
        printk(KERN_ERR "Error creating sdma test module class.\n");
        unregister_chrdev(gMajor, "sdma_test");
        return PTR_ERR(dma_tm_class);
    }


#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28))
    temp_class = device_create(dma_tm_class, NULL,
                   MKDEV(gMajor, 0), NULL, "sdma_test");
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
    temp_class = device_create(dma_tm_class, NULL,
                   MKDEV(gMajor, 0), "sdma_test");
#else
    temp_class = class_device_create(dma_tm_class, NULL,
                         MKDEV(gMajor, 0), NULL,
                         "sdma_test");
#endif
    if (IS_ERR(temp_class)) {
        printk(KERN_ERR "Error creating sdma test class device.\n");
        class_destroy(dma_tm_class);
        unregister_chrdev(gMajor, "sdma_test");
        return -1;
    }


    printk("SDMA test Driver Module loaded\n");
    return 0;
}

static void sdma_cleanup_module(void)
{
    unregister_chrdev(gMajor, "sdma_test");
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
    device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#else
    class_device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#endif
    class_destroy(dma_tm_class);


    printk("SDMA test Driver Module Unloaded\n");
}

module_init(sdma_init_module);
module_exit(sdma_cleanup_module);
复制代码

 




2:sg方式实现

复制代码
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mman.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <mach/dma.h>


#include <linux/dmaengine.h>
#include <linux/device.h>


#include <linux/io.h>
#include <linux/delay.h>


static int gMajor; /* major number of device */
static struct class *dma_tm_class;
u32 *wbuf, *wbuf2, *wbuf3, *wbuf4;
u32 *rbuf, *rbuf2, *rbuf3, *rbuf4;


struct dma_chan *dma_m2m_chan;


struct completion dma_m2m_ok;


struct scatterlist sg[4], sg2[4];


#define SDMA_BUF_SIZE  1024*60






static bool dma_m2m_filter(struct dma_chan *chan, void *param)
{
if (!imx_dma_is_general_purpose(chan))
return false;
chan->private = param;
return true;
}


int sdma_open(struct inode *inode, struct file *filp)
{
dma_cap_mask_t dma_m2m_mask;
struct imx_dma_data m2m_dma_data;


init_completion(&dma_m2m_ok);


dma_cap_zero(dma_m2m_mask);
dma_cap_set(DMA_SLAVE, dma_m2m_mask);
m2m_dma_data.peripheral_type = IMX_DMATYPE_MEMORY;
m2m_dma_data.priority = DMA_PRIO_HIGH;
dma_m2m_chan = dma_request_channel(dma_m2m_mask, dma_m2m_filter,
&m2m_dma_data);
if (!dma_m2m_chan) {
printk("Error opening the SDMA memory to memory channel\n");
return -EINVAL;
}


wbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!wbuf) {
printk("error wbuf !!!!!!!!!!!\n");
return -1;
}


wbuf2 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!wbuf2) {
printk("error wbuf2 !!!!!!!!!!!\n");
return -1;
}


wbuf3 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!wbuf3) {
printk("error wbuf3 !!!!!!!!!!!\n");
return -1;
}


wbuf4 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!wbuf4) {
printk("error wbuf4 !!!!!!!!!!!\n");
return -1;
}


rbuf = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!rbuf) {
printk("error rbuf !!!!!!!!!!!\n");
return -1;
}


rbuf2 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!rbuf2) {
printk("error rbuf2 !!!!!!!!!!!\n");
return -1;
}


rbuf3 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!rbuf3) {
printk("error rbuf3 !!!!!!!!!!!\n");
return -1;
}


rbuf4 = kzalloc(SDMA_BUF_SIZE, GFP_DMA);
if(!rbuf4) {
printk("error rbuf4 !!!!!!!!!!!\n");
return -1;
}


return 0;
}


int sdma_release(struct inode * inode, struct file * filp)
{
dmaengine_terminate_all(dma_m2m_chan);
dma_release_channel(dma_m2m_chan);
dma_m2m_chan = NULL;
kfree(wbuf);
kfree(wbuf2);
kfree(wbuf3);
kfree(rbuf);
kfree(rbuf2);
kfree(rbuf3);
return 0;
}


ssize_t sdma_read (struct file *filp, char __user * buf, size_t count,
loff_t * offset)
{
int i;
#if 0
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
printk("dst data_%d : %x\n", i, *(rbuf+i));
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
printk("dst data2_%d : %x\n", i, *(rbuf2+i));
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
printk("dst data3_%d : %x\n", i, *(rbuf3+i));
}
#endif


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
if (*(rbuf+i) != *(wbuf+i)) {
printk("buffer 1 copy falled!\n");
return 0;
}
}
printk("buffer 1 copy passed!\n");


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
if (*(rbuf2+i) != *(wbuf2+i)) {
printk("buffer 2 copy falled!\n");
return 0;
}
}
printk("buffer 2 copy passed!\n");


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
if (*(rbuf3+i) != *(wbuf3+i)) {
printk("buffer 3 copy falled!\n");
return 0;
}
}
printk("buffer 3 copy passed!\n");


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
if (*(rbuf4+i) != *(wbuf4+i)) {
printk("buffer 4 copy falled!\n");
return 0;
}
}
printk("buffer 4 copy passed!\n");


return 0;
}


static void dma_m2m_callback(void *data)
{
complete(&dma_m2m_ok);
return ;
}


ssize_t sdma_write(struct file * filp, const char __user * buf, size_t count,
loff_t * offset)
{
u32 *index1, *index2, *index3, *index4, i, ret;
struct dma_slave_config dma_m2m_config;
struct dma_async_tx_descriptor *dma_m2m_desc;
index1 = wbuf;
index2 = wbuf2;
index3 = wbuf3;
index4 = wbuf4;
struct timeval end_time;
unsigned long end, start;
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
*(index1 + i) = 0x12121212;
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
*(index2 + i) = 0x34343434;
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
*(index3 + i) = 0x56565656;
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
*(index4 + i) = 0x78787878;
}


#if 0
for (i=0; i<SDMA_BUF_SIZE/4; i++) {
printk("input data_%d : %x\n", i, *(wbuf+i));
}


for (i=0; i<SDMA_BUF_SIZE/2/4; i++) {
printk("input data2_%d : %x\n", i, *(wbuf2+i));
}


for (i=0; i<SDMA_BUF_SIZE/4; i++) {
printk("input data3_%d : %x\n", i, *(wbuf3+i));
}
#endif
dma_m2m_config.direction = DMA_MEM_TO_MEM;
dma_m2m_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
dmaengine_slave_config(dma_m2m_chan, &dma_m2m_config);


sg_init_table(sg, 4);
sg_set_buf(&sg[0], wbuf, SDMA_BUF_SIZE);
sg_set_buf(&sg[1], wbuf2, SDMA_BUF_SIZE);
sg_set_buf(&sg[2], wbuf3, SDMA_BUF_SIZE);
sg_set_buf(&sg[3], wbuf4, SDMA_BUF_SIZE);
ret = dma_map_sg(NULL, sg, 4, dma_m2m_config.direction);


sg_init_table(sg2, 4);
sg_set_buf(&sg2[0], rbuf, SDMA_BUF_SIZE);
sg_set_buf(&sg2[1], rbuf2, SDMA_BUF_SIZE);
sg_set_buf(&sg2[2], rbuf3, SDMA_BUF_SIZE);
sg_set_buf(&sg2[3], rbuf4, SDMA_BUF_SIZE);
ret = dma_map_sg(NULL, sg2, 4, dma_m2m_config.direction);


dma_m2m_desc = dma_m2m_chan->device->
device_prep_dma_sg(dma_m2m_chan, sg2, 4, sg, 4, 0);
dma_m2m_desc->callback = dma_m2m_callback;
//printk("1111111111111\n");
do_gettimeofday(&end_time);
start = end_time.tv_sec*1000000 + end_time.tv_usec;


dmaengine_submit(dma_m2m_desc);
dma_async_issue_pending(dma_m2m_chan);


wait_for_completion(&dma_m2m_ok);
//printk("2222222222222\n");
do_gettimeofday(&end_time);
end = end_time.tv_sec*1000000 + end_time.tv_usec;
printk("end - start = %d\n", end - start);
dma_unmap_sg(NULL, sg, 4, dma_m2m_config.direction);
dma_unmap_sg(NULL, sg2, 4, dma_m2m_config.direction);


return 0;
}


struct file_operations dma_fops = {
open: sdma_open,
release: sdma_release,
read: sdma_read,
write: sdma_write,
};


int __init sdma_init_module(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
struct device *temp_class;
#else
struct class_device *temp_class;
#endif
int error;


/* register a character device */
error = register_chrdev(0, "sdma_test", &dma_fops);
if (error < 0) {
printk("SDMA test driver can't get major number\n");
return error;
}
gMajor = error;
printk("SDMA test major number = %d\n",gMajor);


dma_tm_class = class_create(THIS_MODULE, "sdma_test");
if (IS_ERR(dma_tm_class)) {
printk(KERN_ERR "Error creating sdma test module class.\n");
unregister_chrdev(gMajor, "sdma_test");
return PTR_ERR(dma_tm_class);
}


#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28))
temp_class = device_create(dma_tm_class, NULL,
  MKDEV(gMajor, 0), NULL, "sdma_test");
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
temp_class = device_create(dma_tm_class, NULL,
  MKDEV(gMajor, 0), "sdma_test");
#else
temp_class = class_device_create(dma_tm_class, NULL,
    MKDEV(gMajor, 0), NULL,
    "sdma_test");
#endif
if (IS_ERR(temp_class)) {
printk(KERN_ERR "Error creating sdma test class device.\n");
class_destroy(dma_tm_class);
unregister_chrdev(gMajor, "sdma_test");
return -1;
}


printk("SDMA test Driver Module loaded\n");
return 0;
}


static void sdma_cleanup_module(void)
{
unregister_chrdev(gMajor, "sdma_test");
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26))
device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#else
class_device_destroy(dma_tm_class, MKDEV(gMajor, 0));
#endif
class_destroy(dma_tm_class);


printk("SDMA test Driver Module Unloaded\n");
}


module_init(sdma_init_module);
module_exit(sdma_cleanup_module);
复制代码

 

当时测出大约1秒钟可以拷贝50M的数据,但是客户还觉得不满意。
                      
原文链接:https://blog.csdn.net/u012769691/article/details/46814305
posted @   最好不过如今  阅读(144)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
点击右上角即可分享
微信分享提示