2基因组间鉴定SV

本文学习费章军老师文章Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding 如何鉴定SV。

其流程见 https://github.com/GaoLei-bio/SV

1 SV-calling

1.1 基因组间比较

简单思路: 2个基因组比较--》调取unique 比对--〉二代reads比对过滤

软件准备:

  • minimap2 (v2.11 or higher)
  • sam2delta.py (RaGoo 下的一个脚本,将sam格式变为nucmer的格式)
  • Assemblytics
  • samtools (v1.5 or higher)
  • blast+
  • python 2.7
    -- operator
    -- pathlib
    -- argparse
    -- os
    -- re
    -- subprocess
    -- sys

数据准备:

  • reference genome
  • query genome (二者质量较高,且相关物种;$\color{red}{染色体命名规则;xxxchr01, xxxchr02, contig等合并为 xxxchr00}$)
  • 两个基因组所对应的illumine reads (因为组装不完整,导致没有组装的区域被认为是delete,因此用二代数据过滤SV)
  • QryRead2Ref.bam (sorted, rmdup; query reads 比对到reference;$\color{red}{可以bwa-mem进行比对,名字必须是这个}$)
  • RefRead2Qry.bam (sorted, rmdup;ref reads比对到Query genome)
  • Ref_self.bam; 同上
  • Qry_self.bam; 同上

$\color{red} {上述4个bam文件必须sort,且去重复,index,且命名和上述统一,且均放于工作目录}$

简单操练一下:
将下载的所有脚本置于一个文件即可

## 运行SV_calling.sh 即可
Command:
      bash path_to_SV_calling_script/SV_calling.sh \
           path_to_SV_calling_script \
           <Reference_genome_file>   \
           <Query_genome_file>  \
           <Prefix_for_outputs> \
           <number of threads>  \
           <min_SV_size>   \
           <max_SV_size>  \
           <assemblytics_path>
### 具体数据
bash path_to_SV_calling_script/SV_calling.sh \
          path_to_SV_calling_script \
          SL4.0.genome.fasta  \
           Pimp_v1.4.fasta  \
            SP2SL 24 10 1000000 \
            path_to_assemblytics_scripts

## 上述的4个bam文件必须放在当前工作目录下

结果:

  • SP2SL.Master_list.tsv
  • SP2SL.NR.bed (用于下一步)

1.2 pacbio reads进行鉴定SV (可选)

数据准备:

  • Prefix_for_outputs.NR.bed: 上一步结果
  • Reference_genome_file: fasta
  • Query_genome_file: fasta
  • Ref_base_pbsv_vcf (利用pbsv 将query pacbio reads比对到reference genome 获得SV)
  • Qry_base_pbsv_vcf (利用pbsv 将reference pacbio reads比对到Query genome 获得SV)

直接操练

  Command:
      bash path_to_SV_calling_script/SV_PacBio.sh \
           path_to_SV_calling_script \
           <Reference_genome_file>   \
           <Query_genome_file>  \
           <Prefix_for_outputs> \
           <number of threads> \
           <Ref_base_pbsv_vcf> \
           <Qry_base_pbsv_vcf>

## 具体例子
For example:
      bash path_to_SV_calling_script/SV_PacBio.sh \
           path_to_SV_calling_script \
           SL4.0.genome.fasta  \
           Pimp_v1.4.fasta   \
           SP2SL  24  \
           PimpReads2SL4.0.var.vcf  \
           HeinzReads2Pimp.var.vcf

结果:

  • SP2SL.Master_list.tsv

可将上述两种方法得到的SV结果进行合并即可。

2 SV-genotyping

主要程序 SV_genotyping.py, 且在Example中有实例文件

准备数据:

  • 重测序数据分别比对到Query 和Ref genome (bwa即可【❤️ bp错配】,去重复,)并排序
Parameters:
INPUT=Example/Example_SV.tsv  # Path to your input SV file. A example of input SV file is provided.
sample=Sample_name            # Sample name, prefix of outputs
Reference=Reference_genome    # Path to Reference genome, fasta format, indexed by samtools faidx
Query=Query_genome            # Path to Query genome , fasta format, indexed by samtools faidx
Ref_bam=Reference_base_bam    # Sorted bam file with reads aligned on Reference genome
Qry_bam=Query_base_bam        # Sorted bam file with reads aligned on Query genome
Mismath=3                     # Allowed mismath percentage of aligned read

## 实例数据
 python SV_genotyping.py Example/Example_input.tsv \
                    Example Example/Reference.fasta \
                      Example/Query.fasta \ 
                        Example/Sample.Ref_base.bam \
                            Example/Sample.Qry_base.bam 3

结果

  • Example.GT.txt.
head Example.GT.txt.
#Genotype: R for homozygous Reference genotype; Q for homozygous Query genotype; H for Heterozygous genotype; U for Undetermined.
SV_ID	Example_1m
SV_w_5206	Q
SV_w_5207	Q
SV_w_5209	R
SV_w_5210	Q
SV_w_5211	Q
SV_w_5212	H
SV_w_5213	Q
SV_w_5214	Q

欢迎扫码交流

参考

posted @ 2021-01-25 13:10  斩毛毛  阅读(1053)  评论(0编辑  收藏  举报