unity3d ppsspp模拟器中的post processing shader在unity中使用
这个位置可以看到ppsspp的特殊处理
文件位置
来看看这些特效
用来测试的未加特效图片
ppsspp:
传说系列一生爱---英杰传说
最后的战士
aacolor
是关于饱和度,亮度,对比度,色调的调节,
ppsspp中的默认参数为饱和度加强1.2倍,对比度增强1.25倍,在unity中我们可以设为外部变量自己调节
关键代码:
float4 frag(v2f i) :COLOR { float size = 1 / _Size; float3 c10 = tex2D(_MainTex, i.uv_MainTex + float2(0, -1)*size).rgb; float3 c01 = tex2D(_MainTex, i.uv_MainTex + float2(-1, 0)*size).rgb; float3 c11 = tex2D(_MainTex, i.uv_MainTex).rgb; float3 c21 = tex2D(_MainTex, i.uv_MainTex + float2(1, 0)*size).rgb; float3 c12 = tex2D(_MainTex, i.uv_MainTex + float2(0, 1)*size).rgb; float3 dt = float3(1.0, 1.0, 1.0); float k1 = dot(abs(c01 - c21), dt); float k2 = dot(abs(c10 - c12), dt); float3 color = (k1*(c10 + c12) + k2*(c01 + c21) + 0.001*c11) / (2.0*(k1 + k2) + 0.001); float x = sqrt(dot(color, color)); color.r = pow(color.r + 0.001, _A); color.g = pow(color.g + 0.001, _A); color.b = pow(color.b + 0.001, _A); //饱和度,亮度,对比度,色调映射 return float4(contrast4(x)*normalize(color*_C_ch)*_B,1); }
ppsspp中实测
unity中实测
bloom
辉光效果
ppsspp中的辉光在unity种效果并不好,模糊处理不够,亮度过量,采样方式为grid采样
之前写过一篇详细博文关于HDR(与bloom相似)
关键代码:
float4 frag(v2f i) :COLOR { float size = 1 / _Size; float2 uv = i.uv_MainTex; float3 color = tex2D(_MainTex, i.uv_MainTex); float4 sum = 0; float3 bloom; for (int i = -3; i < 3; i++) { sum += tex2D(_MainTex, uv + float2(-1, i)*size) * _Amount; sum += tex2D(_MainTex, uv + float2(0, i)*size) * _Amount; sum += tex2D(_MainTex, uv + float2(1, i)*size) * _Amount; } if (color.r < 0.3 && color.g < 0.3 && color.b < 0.3) { bloom = sum.rgb*sum.rgb*0.012 + color; } else { if (color.r < 0.5 && color.g < 0.5 && color.b < 0.5) { bloom = sum.xyz*sum.xyz*0.009 + color; } else { bloom = sum.xyz*sum.xyz*0.0075 + color; } } bloom = mix(color, bloom, _Power); return float4(bloom, 1); }
ppsspp中实测
unity中实测
cartoon
卡通效果的post processing
颜色总共分为四层,把颜色灰度每层段数值再加上减到最少的小数部分,产生一些过渡效果
再用得出的灰度乘上原色值,保留了原来的颜色只是明暗分为四层,层之间有过度
通过边缘检测描边,着色道理与之前写过的一篇详细博文像似,但不完全相同,
关键代码:
float4 frag(v2f i) :COLOR { float size = 1 / _Size; float3 c00 = tex2D(_MainTex, i.uv_MainTex + float2(-1, -1)*size).rgb; float3 c10 = tex2D(_MainTex, i.uv_MainTex + float2(0, -1)*size).rgb; float3 c20 = tex2D(_MainTex, i.uv_MainTex + float2(1, -1)*size).rgb; float3 c01 = tex2D(_MainTex, i.uv_MainTex + float2(-1, 0)*size).rgb; float3 c11 = tex2D(_MainTex, i.uv_MainTex).rgb; float3 c21 = tex2D(_MainTex, i.uv_MainTex + float2(1, 0)*size).rgb; float3 c02 = tex2D(_MainTex, i.uv_MainTex + float2(-1, 1)*size).rgb; float3 c12 = tex2D(_MainTex, i.uv_MainTex + float2(0, 1)*size).rgb; float3 c22 = tex2D(_MainTex, i.uv_MainTex + float2(1, 1)*size).rgb; float3 dt = float3(1.0, 1.0, 1.0); float d1 = dot(abs(c00 - c22), dt); float d2 = dot(abs(c20 - c02), dt); float hl = dot(abs(c01 - c21), dt); float vl = dot(abs(c10 - c12), dt); float d = _Bb*(d1 + d2 + hl + vl) / (dot(c11, dt) + 0.15); float lc = 4.0*length(c11); float f = frac(lc); f *= f; lc = 0.25*(floor(lc) + f*f) + 0.05; //颜色总共分为四层,把颜色灰度每层段数值再加上减到最少的小数部分,产生一些过渡效果 c11 = 4.0*normalize(c11); float3 frct = frac(c11); frct *= frct; c11 = floor(c11) + 0.05*dt + frct*frct; return float4(0.25*lc*(1.1 - d*sqrt(d))*c11,1); //再用得出的灰度乘上原色值,保留了原来的颜色只是明暗分为四层,层之间有过度 //通过边缘检测描边,着色道理与之前的一篇文章像似,但不完全相同, }
ppsspp中实测
unity中实测
CRT
CRT是模拟以前大脑袋电脑的阴极射线管(Cathode Ray Tube)的显示器的特殊效果,频闪之类的特效,用过大脑袋的都懂。
关键代码:
float4 frag(v2f i) :COLOR { // scanlines float vPos = float((i.uv_MainTex.y + _Time.z * 0.5) * 272.0); float j = 2; float line_intensity = modf(float(vPos), j); // color shift float off = line_intensity *0.00001; float2 shift = float2(off, 0); // shift R and G channels to simulate NTSC color bleed float2 colorShift = float2(0.001, 0); float r = tex2D(_MainTex, i.uv_MainTex + colorShift + shift).x; float g = tex2D(_MainTex, i.uv_MainTex - colorShift + shift).y; float b = tex2D(_MainTex, i.uv_MainTex).z; float4 c = float4(r, g * 0.99, b, 1) * clamp(line_intensity, 0.85, 1); float rollbar = sin((i.uv_MainTex.y + _Time.z) * 30); return c + (rollbar * 0.02); }
ppsspp中实测
unity中实测
fxaa
ppsspp的fxaa抗锯齿效果在unity上异常的好,耗费很少,
四个采样点来进行边缘检测(边缘检测的很粗糙),边缘处两个点之间模糊
关键代码:
float4 frag(v2f i) :COLOR { float u_texelDelta = 1 / _Size; float FXAA_SPAN_MAX = 8.0; float FXAA_REDUCE_MUL = 1.0 / 8.0; float FXAA_REDUCE_MIN = (1.0 / 128.0); float3 rgbNW = tex2D(_MainTex, i.uv_MainTex + (float2(-1.0, -1.0) * u_texelDelta)).xyz; float3 rgbNE = tex2D(_MainTex, i.uv_MainTex + (float2(+1.0, -1.0) * u_texelDelta)).xyz; float3 rgbSW = tex2D(_MainTex, i.uv_MainTex + (float2(-1.0, +1.0) * u_texelDelta)).xyz; float3 rgbSE = tex2D(_MainTex, i.uv_MainTex + (float2(+1.0, +1.0) * u_texelDelta)).xyz; float3 rgbM = tex2D(_MainTex, i.uv_MainTex).xyz; float3 luma = float3(0.299, 0.587, 0.114); float lumaNW = dot(rgbNW, luma); float lumaNE = dot(rgbNE, luma); float lumaSW = dot(rgbSW, luma); float lumaSE = dot(rgbSE, luma); float lumaM = dot(rgbM, luma); float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE))); float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE))); float2 dir; dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE)); dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE)); float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL), FXAA_REDUCE_MIN); float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce); dir = min(float2(FXAA_SPAN_MAX, FXAA_SPAN_MAX), max(float2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX), dir * rcpDirMin)) * u_texelDelta; float3 rgbA = (1.0 / 2.0) * ( tex2D(_MainTex, i.uv_MainTex + dir * (1.0 / 3.0 - 0.5)).xyz + tex2D(_MainTex, i.uv_MainTex + dir * (2.0 / 3.0 - 0.5)).xyz); float3 rgbB = rgbA * (1.0 / 2.0) + (1.0 / 4.0) * ( tex2D(_MainTex, i.uv_MainTex + dir * (0.0 / 3.0 - 0.5)).xyz + tex2D(_MainTex, i.uv_MainTex + dir * (3.0 / 3.0 - 0.5)).xyz); float lumaB = dot(rgbB, luma); if ((lumaB < lumaMin) || (lumaB > lumaMax)){ return float4( rgbA,1); } else { return float4(rgbB, 1); } //整体上是一个边缘检测,在边缘处进行采样模糊 }
ppsspp中实测
unity中实测
grayscale
灰度
白光的亮度用Y表示,它和红绿蓝三色光的关系:
Y = 0.299R+0.587G+0.114B NTSC美制电视制式亮度公式
Y = 0.222R+0.707G+0.071B PAL(相位逐行交变)电视制式
ppsspp使用的是NTSC美制,Unity中的Luminance函数使用的是PAL制式
关键代码:
float4 frag(v2f i) :COLOR { float3 rgb = tex2D(_MainTex, i.uv_MainTex).rgb; float luma = dot(rgb, float3(0.299, 0.587, 0.114)); return luma; }
ppsspp中实测
unity中实测
inversecolors
反色
关键代码:
float4 frag(v2f i) :COLOR { float3 rgb = tex2D(_MainTex, i.uv_MainTex).rgb; float luma = dot(rgb, float3(0.299, 0.587, 0.114)); // luma = Luminance(rgb); float3 gray = float3(luma, luma, luma) - 0.5; rgb -= float3(0.5, 0.5, 0.5); return float4(mix(rgb, gray, 2.0) + 0.5, 1); }
ppsspp中实测
unity中实测
natural
使颜色变得自然
把颜色从RGB转到YIQ色彩空间在进行变换
关键代码:
float4 frag(v2f i) :COLOR { float3 val00 = float3(1.2, 1.2, 1.2); float3x3 RGBtoYIQ = float3x3(0.299, 0.596, 0.212, 0.587, -0.275, -0.523, 0.114, -0.321, 0.311); float3x3 YIQtoRGB = float3x3(1.0, 1.0, 1.0, 0.95568806036115671171, -0.27158179694405859326, -1.1081773266826619523, 0.61985809445637075388, -0.64687381613840131330, 1.7050645599191817149); float4 c = tex2D(_MainTex, i.uv_MainTex); float3 c1 =mul( RGBtoYIQ,c.rgb); c1 = float3(pow(c1.x, val00.x), c1.yz*val00.yz); //转换到YIQ色彩空间再加强GB颜色1.2倍 return float4(mul(YIQtoRGB,c1), 1); }
ppsspp中实测
unity中实测
scanlines
屏幕上的线的效果
关键代码:
float4 frag(v2f i) :COLOR { float pos0 = ((i.uv_MainTex.y + 1.0) * 170.0*_Amount); float pos1 = cos((frac(pos0) - 0.5)*3.1415926*_Inten)*1.5; float4 rgb = tex2D(_MainTex, i.uv_MainTex); // slight contrast curve float4 color = rgb*0.5 + 0.5*rgb*rgb*1.2; // color tint color *= float4(0.9, 1.0, 0.7, 0.0); // vignette color *= 1.1 - 0.6 * (dot(i.uv_MainTex - 0.5, i.uv_MainTex - 0.5) * 2.0); return mix(float4(0, 0, 0, 0), color, pos1); }
ppsspp中实测
unity中实测
sharpen
锐化
取上下两个采样点,采样点之间的颜色差越大(边缘,色差大等处),sharp越明显
关键代码:
float4 frag(v2f i) :COLOR { float4 c = tex2D(_MainTex, i.uv_MainTex); c -= tex2D(_MainTex, i.uv_MainTex + _Size)*7.0*_Inten; c += tex2D(_MainTex, i.uv_MainTex - _Size)*7.0*_Inten; //采样点之间的颜色差越大(边缘,色差大等处),sharp越明显 return c; }
ppsspp中实测
unity中实测
vignette
晕影效果
关键代码:
float4 frag(v2f i) :COLOR { float vignette = 1.1 - 0.6 * (dot(i.uv_MainTex - 0.5, i.uv_MainTex - 0.5) * 2.0); float3 rgb = tex2D(_MainTex, i.uv_MainTex).rgb; return float4(vignette * rgb, 1); }
ppsspp中实测
unity中实测
4xhqglsl
平滑效果
ppsspp中实测
upscale_spline36
缩放滤镜
基于样条线的缩放(Spline based resizers)分别有spline16 spline36 spline64这三个缩放滤镜基于样条插值算法。样条差值算法在放大时尽可能的锐化图像,减少失真
该算法原作者为Panorama tools的开发者
详细算法的介绍请看forum.doom9.org/showthread.php?t=147117
ppsspp中实测
用一张不同的图做测试,在比例2X的情况下全屏拉伸,图像会变模糊,使用缩放滤镜进行放大,效果就像4X一样清楚
未开启
开启
全部代码已上传至GitHub
--------by wolf96