摘要:
matlab图像处理为什么要归一化和如何归一化,一、为什么归一化1. 基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响。也就是转换成唯一的标准形式以抵抗仿射变换 图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是... 阅读全文
摘要:
一、粒子群算法的历史 粒子群算法源于复杂适应系统(ComplexAdaptiveSystem,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改... 阅读全文
摘要:
机器学习问题方法总结大类名称关键词有监督分类决策树信息增益分类回归树Gini指数,Χ2统计量,剪枝朴素贝叶斯非参数估计,贝叶斯估计线性判别分析Fishre判别,特征向量求解K最邻近相似度度量:欧氏距离、街区距离、编辑距离、向量夹角、Pearson相关系数逻辑斯谛回归(二值分类)参数估计(极大似然估计... 阅读全文
摘要:
本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。单高斯分布模型GSM多维变量X服从高斯分布时,它的概率密度函数PDF为:x是维度为d的列向量,u是模型期望,Σ是... 阅读全文
摘要:
目前机器学习最热门的领域有以下七个,后面给出相应的资料链接:1. 迁移学习Transfer learning 。 http://www.cse.ust.hk/TL/index.html2. 半监督学习Semi-Supervised learning 。 http://pages.cs.wisc.ed... 阅读全文
摘要:
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是... 阅读全文
摘要:
介绍一下奇异值分解来压缩图像。今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来。这里是用的不是图像序列了,只是单单的一幅图像,所以直接就对图像矩阵进行svd了。 吴军的《数学之美》里其实已经介绍过用svd进行大数据的压缩了,不... 阅读全文
摘要:
PCA检测人脸的简单示例,matlab R2009b上实现训练:训练用的20副人脸:%训练%Lx=X'*Xclear;clc;train_path='..\Data\TrainingSet\';phi=zeros(64*64,20);for i=1:20path=strcat(train_path,... 阅读全文
摘要:
对于PCA,一直都是有个概念,没有实际使用过,今天终于实际使用了一把,发现PCA还是挺神奇的。在OPENCV中使用PCA非常简单,只要几条语句就可以了。1、初始化数据//每一行表示一个样本CvMat* pData = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );C... 阅读全文
摘要:
前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的。本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类。 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2... 阅读全文