摘要: 前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的。本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类。 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2... 阅读全文
posted @ 2014-11-24 21:45 大雄的哆啦A梦 阅读(515) 评论(0) 推荐(0) 编辑
摘要: 以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识。本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会。主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数... 阅读全文
posted @ 2014-11-24 20:06 大雄的哆啦A梦 阅读(22474) 评论(0) 推荐(0) 编辑
摘要: 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一... 阅读全文
posted @ 2014-11-24 18:14 大雄的哆啦A梦 阅读(258) 评论(0) 推荐(0) 编辑
摘要: 定理:(奇异值分解)设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得: A = U*S*V’其中S=diag(σi,σ2,……,σr),σi>0(i=1,…,r),r=rank(A)。推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得A = U*S*V’其中S=diag(σi... 阅读全文
posted @ 2014-11-24 16:44 大雄的哆啦A梦 阅读(1850) 评论(0) 推荐(0) 编辑
摘要: 在信号处理中经常碰到观测值的自相关矩阵,从物理意义上说,如果该观测值是由几个(如 K 个)相互统计独立的源信号线性混合而成,则该相关矩阵的秩或称维数就为 K,由这 K 个统计独立信号构成 K 维的线性空间,可由自相关矩阵最大 K 个特征值所对应的特征向量或观测值矩阵最大 K 个奇异值所对应的左... 阅读全文
posted @ 2014-11-24 16:23 大雄的哆啦A梦 阅读(1305) 评论(0) 推荐(0) 编辑