CCF CSP 202012-2 期末预测之最佳阈值

202012-2 期末预测之最佳阈值

题目背景

考虑到安全指数是一个较大范围内的整数、小菜很可能搞不清楚自己是否真的安全,顿顿决定设置一个阈值 θ,以便将安全指数 y 转化为一个具体的预测结果——“会挂科”或“不会挂科”。

因为安全指数越高表明小菜同学挂科的可能性越低,所以当 y≥θ 时,顿顿会预测小菜这学期很安全、不会挂科;反之若 y<θ,顿顿就会劝诫小菜:“你期末要挂科了,勿谓言之不预也。”

那么这个阈值该如何设定呢?顿顿准备从过往中寻找答案。

题目描述

具体来说,顿顿评估了 m 位同学上学期的安全指数,其中第 i(1≤i≤m)位同学的安全指数为\(y_i\),是一个 \([0,10^8]\) 范围内的整数;同时,该同学上学期的挂科情况记作 \(result_i∈0,1\),其中 0 表示挂科、1 表示未挂科。
相应地,顿顿用 \(predict_θ(y)\) 表示根据阈值 θ 将安全指数 y 转化为的具体预测结果。
如果 $predict_θ(y_j) $与 \(result_j\) 相同,则说明阈值为 θ 时顿顿对第 j 位同学是否挂科预测正确;不同则说明预测错误。

\[\mathrm{predict}_{\theta} ( y ) = \left\{ \begin{array}{cc} 0& {(y < \theta)} \\1& {(y \ge \theta)} \end{array} \right. \]

最后,顿顿设计了如下公式来计算最佳阈值 θ∗:

\[\theta^* = \max { \mathop{\mathrm{argmax} }\limits_{\theta \in { y_i } } \sum\limits_{j=1}^{m} ( \mathrm{predict}_{\theta} ( y_j ) == result_j ) } \]

该公式亦可等价地表述为如下规则:

  1. 最佳阈值仅在 \(y_i\)中选取,即与某位同学的安全指数相同;
  2. 按照该阈值对这 m 位同学上学期的挂科情况进行预测,预测正确的次数最多(即准确率最高);
  3. 多个阈值均可以达到最高准确率时,选取其中最大的。

输入格式

从标准输入读入数据。

输入的第一行包含一个正整数 m。

接下来输入 m 行,其中第 i(1≤i≤m)行包括用空格分隔的两个整数\(y_i\)\(result_i\),含义如上文所述。

输出格式

输出到标准输出。

输出一个整数,表示最佳阈值 \(\theta^*\)

样例1输入

6
0 0
1 0
1 1
3 1
5 1
7 1

样例1输出

3

样例1解释

按照规则一,最佳阈值的选取范围为 0,1,3,5,7。

θ=0 时,预测正确次数为 4;

θ=1 时,预测正确次数为 5;

θ=3 时,预测正确次数为 5;

θ=5 时,预测正确次数为 4;

θ=7 时,预测正确次数为 3。

阈值选取为 1 或 3 时,预测准确率最高;
所以按照规则二,最佳阈值的选取范围缩小为 1,3。

依规则三,\(\theta^*=max1,3=3\)

样例2输入

8
5 1
5 0
5 0
2 1
3 0
4 0
100000000 1
1 0

样例2输出

100000000

子任务

70% 的测试数据保证 \(m≤200\)

全部的测试数据保证 \(2≤m≤10^5\)

错误代码

#include<stdio.h>
int main(){
    int  m,i ,j,max,sum=0;
    long int y[200],thta,sumi=0;
    int  r[200],p=0;
    scanf("%d",&m);
    while(i<m){
        scanf("%ld %d",&y[i],&r[i]);
        i++;
    }
    for (i=0;i<m;i++){
        max=0;
        thta=y[i];
        for(j=0;j<m;j++){
                if(y[j]<thta){
                    p=0;
                }else{
                    p=1;
                }
                if(r[j]==p){
                    max ++;
                }
        }
        if(max>sum||max==sum){
            sum=max;
            sumi=thta;
        }
    }    
    printf("%ld", sumi);
    return 0;
}

参考思路1:前缀和

转载自:https://blog.csdn.net/qq_43464088/article/details/112080044

  • 将时间复杂度从\(O(m^2)\)降到\(O(m)\);

  • 解题思路:先对数据按照安全指数yi进行升序排序,然后求出比yi小的0的个数,比yi大的1的个数;

  • 题目数据规模m为1e5,如果用暴力两层for循环是会超时的,只能通过70%的数据,不能拿满分;

前缀和

前缀和是一种重要的预处理,能大大降低查询的时间复杂度。
最简单的一道题就是给定 n 个数和 m 次询问,每次询问一段区间的和。求一个 O(n + m) 的做法。
用 O(n) 前缀和预处理,O(m) 询问。

for(int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + a[i];  //O(n)
while(m--)        //O(m)
 {
     int L, R; scanf("%d%d", &L, &R);
     printf("%d\n", sum[R] - sum[L - 1]);
 }
代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,Max=0,res;
int sum[N]={0};
set<int>st;
pair<int,int>pr[N];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		int a,b;
		cin>>a>>b;
		pr[i]=make_pair(a,b);
	}
	sort(pr+1,pr+n+1);//1.先排序
	for(int i=1;i<=n;i++)
		sum[i] =sum[i-1]+ pr[i].second;//2.求挂科情况前缀和 
	for(int i=1;i<=n;i++)
	{
		int a=pr[i].first;//选取阈值 
		if(st.count(a)) continue;//set去重 
		st.insert(a);
		int yuce1 = sum[n]-sum[i-1];//大于等于阈值时,应统计预测结果中为1的个数 
		int yuce0 = i-1-sum[i-1];//小与阈值时,应统计预测结果中为0的个数 
		int yuce = yuce1+ yuce0;//合计预测正确次数 
		if(yuce >= Max) {
			Max=yuce;
			res=a;
		}
	}
	cout<<res;
	return 0;
}

参考思路2

转载自:https://blog.csdn.net/qq_38632614/article/details/111934286

#include<iostream>
#include<algorithm>
using namespace std;
 
typedef struct Node{
	int theta;
	int result;
}Node;
 
bool cmp(Node a,Node b){
	return a.theta<b.theta;
}
 
int main(){
	int m;
	Node node[100005];
	int flag0[100005]={0}; //记录小于每个位置点阈值的result=0的个数 
	int flag1[100005]={0}; //记录大于等于每个位置点阈值的result=1的个数 
	
	/*--输入--*/ 
	cin>>m;
	for(int i=0;i<m;i++){
		cin>>node[i].theta>>node[i].result;
	}
	sort(node,node+m,cmp); //输入后排序 
	
	int i=0,j=1;
	int temp0=0,temp1=0;
	/*--统计小于每个阈值的result=0的个数--*/ 
	while(j<m){
		if(node[j].theta==node[i].theta){
			j++;
			continue;
		}
		int temp=0;
		while(i<j){
			if(node[i].result==0)temp++;
			flag0[i]=temp0;
			i++;
		}
		temp0+=temp;
	}
	while(i<j){
		flag0[i]=temp0;
		i++;
	}
	/*--以上统计小于每个阈值的result=0的个数--*/ 
	/*--以下统计大于等于每个阈值的result=1的个数--*/ 
	for(int i=0;i<m;i++){
		if(node[m-1-i].result==1){
			temp1++;
		}
		flag1[m-1-i]=temp1;
	}
	
	//根据flag0和flag1计算每个阈值的准确个数,输出最大的对应的阈值 
	int ans=0,num=0;
	for(int i=0;i<m;i++){
		if(flag0[i]+flag1[i]>=num){
			num=flag0[i]+flag1[i];
			ans=node[i].theta;
		}
	}
	cout<<ans;
}
posted @ 2021-01-21 12:21  张吱吱  阅读(2241)  评论(1编辑  收藏  举报