ZhangZhihui's Blog  

Type assertions

For an expression x of interface type, but not a type parameter, and a type T, the primary expression

x.(T)

asserts that x is not nil and that the value stored in x is of type T. The notation x.(T) is called a type assertion.

More precisely, if T is not an interface type, x.(T) asserts that the dynamic type of x is identical to the type T. In this case, T must implement the (interface) type of x; otherwise the type assertion is invalid since it is not possible for x to store a value of type T. If T is an interface type, x.(T) asserts that the dynamic type of x implements the interface T.

If the type assertion holds, the value of the expression is the value stored in x and its type is T. If the type assertion is false, a run-time panic occurs. In other words, even though the dynamic type of x is known only at run time, the type of x.(T) is known to be T in a correct program.

var x interface{} = 7          // x has dynamic type int and value 7
i := x.(int)                   // i has type int and value 7

type I interface { m() }

func f(y I) {
	s := y.(string)        // illegal: string does not implement I (missing method m)   // string is a string type
	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader    // io.Reader is an interface
	…
}

A type assertion used in an assignment statement or initialization of the special form

v, ok = x.(T)
v, ok := x.(T)
var v, ok = x.(T)
var v, ok interface{} = x.(T) // dynamic types of v and ok are T and bool

yields an additional untyped boolean value. The value of ok is true if the assertion holds. Otherwise it is false and the value of v is the zero value for type T. No run-time panic occurs in this case.

 

Type switches

A type switch compares types rather than values. It is otherwise similar to an expression switch. It is marked by a special switch expression that has the form of a type assertion using the keyword type rather than an actual type:

switch x.(type) {
// cases
}

Cases then match actual types T against the dynamic type of the expression x. As with type assertions, x must be of interface type, but not a type parameter, and each non-interface type T listed in a case must implement the type of x. The types listed in the cases of a type switch must all be different.

TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
TypeCaseClause  = TypeSwitchCase ":" StatementList .
TypeSwitchCase  = "case" TypeList | "default" .

The TypeSwitchGuard may include a short variable declaration. When that form is used, the variable is declared at the end of the TypeSwitchCase in the implicit block of each clause. In clauses with a case listing exactly one type, the variable has that type; otherwise, the variable has the type of the expression in the TypeSwitchGuard.

Instead of a type, a case may use the predeclared identifier nil; that case is selected when the expression in the TypeSwitchGuard is a nil interface value. There may be at most one nil case.

Given an expression x of type interface{}, the following type switch:

switch i := x.(type) {
case nil:
	printString("x is nil")                // type of i is type of x (interface{})
case int:
	printInt(i)                            // type of i is int
case float64:
	printFloat64(i)                        // type of i is float64
case func(int) float64:
	printFunction(i)                       // type of i is func(int) float64
case bool, string:
	printString("type is bool or string")  // type of i is type of x (interface{})
default:
	printString("don't know the type")     // type of i is type of x (interface{})
}

 

posted on 2024-02-21 21:40  ZhangZhihuiAAA  阅读(15)  评论(0编辑  收藏  举报