OC 底层探索 14、类的加载2 - 类的 data

本文衔接 OC 底层探索 13 继续探索类的加载,我们已知通过 readClass() 读取了编译器写的类(or元类),同时给 cls 赋了 name 和把cls 插入到了类/元类的表中,此时cls不仅有了地址还有了 name。此时的类是什么样子的呢?我们读取一下 cls 的内存情况,见下图:

通过上面lldb调试,我们发现cls 的 bits 是0000,并无数据. 继续执行到 realizeClassWithoutSwift() 中:

 

此时其实 cls 的内存还没有分配完毕,初始化和赋值还未处理好,内存还没有完善。

那么 auto ro = (const class_ro_t *)cls->data(); 进行了 data 的读取,这里的 data 是读的什么呢?

--> cls 的内存情况虽未完备,但是它现在已经从编译器读出来了,是有其唯一地址的,我们试着读取下 cls 指针的内容:

显然,bits 是有值的。 即我们可通过 cls 的地址指针进行识别数据的。

问题:cls 是什么时候 bits 有值的呢?

下面继续 _read_images() 的源码分析。

Fix up remapped classes 未进入跳过,协议和分类我们这里暂时不对其进行具体的分析;

一点点扩展:

非懒加载的类才会走进下面3637行代码,直接跑工程并未进去,我们如何走进去呢 --> 给 MyPerson 类添加 +load() 方法:

load 方法的实现为何就会使 MyPerson 的方法提前加载呢? --> load 方法是在 load_images 时就会调用的 --> 若类都没有实现如何 load_images 呢 --> so 方法都提前了

realizeClassWithoutSwift(cls, nil);// 在此之前,cls 还只是一个地址和名字,但是 data 数据信息还是macho中,还并未加载读取到cls的内存中。通过 realizeClassWithoutSwift() 实现,下面对此函数源码进行探究。

tip: 我们之前已知,在消息的转发中 lookUpIMPAndForward 流程中,类必须是已经实现的,若没有实现则必须 realizeClassWithoutSwift() 实现。这里就可知了原因,类必须是已经存在完备的,若是类没有实现,我们无法调其中任何方法的,alloc init 自然也是无法操作实例化出来

那么 懒加载呢?我们注释掉 +load{} 方法,run,打印堆栈信息:

我们在 main.m 中调用了 MyPerson *objc2 = [MyPerson alloc]; // 懒加载 - 敌不动我不动,敌动我动。

懒加载的意义:若没有懒加载,那么我们所有的类的实现 全部处理(代码实现、方法排序、临时变量等)有大量的工作要做,这些都要在 main 函数前处理完,那么会造成 main 函数的启动很慢;懒加载使我们不调用的类不先加载,节省了内存,提高了性能。<-- 这里也验证了为何 load 方法能不写就不写的原因。

下面进行进入 realizeClassWithoutSwift() 流程分析。

一、类的加载

realizeClassWithoutSwift() 源码分析:

源码1:

  1 /***********************************************************************
  2 * realizeClassWithoutSwift
  3 * Performs first-time initialization on class cls, 
  4 * including allocating its read-write data.
  5 * Does not perform any Swift-side initialization.
  6 * Returns the real class structure for the class. 
  7 * Locking: runtimeLock must be write-locked by the caller
  8 **********************************************************************/
  9 static Class realizeClassWithoutSwift(Class cls, Class previously)
 10 {
 11     runtimeLock.assertLocked();
 12 
 13     class_rw_t *rw;
 14     Class supercls;
 15     Class metacls;
 16 
 17     if (!cls) return nil;
 18     if (cls->isRealized()) return cls;
 19     ASSERT(cls == remapClass(cls));
 20 
 21     // fixme verify class is not in an un-dlopened part of the shared cache?
 22 
 23     auto ro = (const class_ro_t *)cls->data();
 24     auto isMeta = ro->flags & RO_META;// 元类判断
 25     if (ro->flags & RO_FUTURE) {
 26         // This was a future class. rw data is already allocated.
 27         rw = cls->data();
 28         ro = cls->data()->ro();
 29         ASSERT(!isMeta);
 30         cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
 31     } else {
 32         // Normal class. Allocate writeable class data.
 33         rw = objc::zalloc<class_rw_t>();// 开辟空间
 34         rw->set_ro(ro);// ro 数据赋值给 rw
 35         rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
 36         cls->setData(rw);// cls 重新将 rw 作为其 data 赋值
 37     }
 38 
 39 #if FAST_CACHE_META
 40     if (isMeta) cls->cache.setBit(FAST_CACHE_META);
 41 #endif
 42 
 43     // Choose an index for this class.
 44     // Sets cls->instancesRequireRawIsa if indexes no more indexes are available
 45     cls->chooseClassArrayIndex();
 46 
 47     if (PrintConnecting) {
 48         _objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
 49                      cls->nameForLogging(), isMeta ? " (meta)" : "", 
 50                      (void*)cls, ro, cls->classArrayIndex(),
 51                      cls->isSwiftStable() ? "(swift)" : "",
 52                      cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
 53     }
 54 
 55     // Realize superclass and metaclass, if they aren't already.
 56     // This needs to be done after RW_REALIZED is set above, for root classes.
 57     // This needs to be done after class index is chosen, for root metaclasses.
 58     // This assumes that none of those classes have Swift contents,
 59     //   or that Swift's initializers have already been called.
 60     //   fixme that assumption will be wrong if we add support
 61     //   for ObjC subclasses of Swift classes.// cls 的所有的父类 元类 全部实现、确定 --> 继承链确定下来
 62     supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);// 父类 递归
 63     metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);// 元类 递归
 64 
 65 #if SUPPORT_NONPOINTER_ISA // isa 的设置
 66     if (isMeta) {
 67         // Metaclasses do not need any features from non pointer ISA
 68         // This allows for a faspath for classes in objc_retain/objc_release.
 69         cls->setInstancesRequireRawIsa();
 70     } else {
 71         // Disable non-pointer isa for some classes and/or platforms.
 72         // Set instancesRequireRawIsa.
 73         bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
 74         bool rawIsaIsInherited = false;
 75         static bool hackedDispatch = false;
 76 
 77         if (DisableNonpointerIsa) {
 78             // Non-pointer isa disabled by environment or app SDK version
 79             instancesRequireRawIsa = true;
 80         }
 81         else if (!hackedDispatch  &&  0 == strcmp(ro->name, "OS_object"))
 82         {
 83             // hack for libdispatch et al - isa also acts as vtable pointer
 84             hackedDispatch = true;
 85             instancesRequireRawIsa = true;
 86         }
 87         else if (supercls  &&  supercls->superclass  &&
 88                  supercls->instancesRequireRawIsa())
 89         {
 90             // This is also propagated by addSubclass()
 91             // but nonpointer isa setup needs it earlier.
 92             // Special case: instancesRequireRawIsa does not propagate
 93             // from root class to root metaclass
 94             instancesRequireRawIsa = true;
 95             rawIsaIsInherited = true;
 96         }
 97 
 98         if (instancesRequireRawIsa) {
 99             cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
100         }
101     }
102 // SUPPORT_NONPOINTER_ISA
103 #endif
104    // 更新父类和元类
105     // Update superclass and metaclass in case of remapping
106     cls->superclass = supercls;
107     cls->initClassIsa(metacls);
108 
109     // Reconcile instance variable offsets / layout.
110     // This may reallocate class_ro_t, updating our ro variable.
111     if (supercls  &&  !isMeta) reconcileInstanceVariables(cls, supercls, ro);
112 
113     // Set fastInstanceSize if it wasn't set already.
114     cls->setInstanceSize(ro->instanceSize);
115 
116     // Copy some flags from ro to rw
117     if (ro->flags & RO_HAS_CXX_STRUCTORS) {
118         cls->setHasCxxDtor();
119         if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
120             cls->setHasCxxCtor();
121         }
122     }
123     
124     // Propagate the associated objects forbidden flag from ro or from
125     // the superclass.
126     if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
127         (supercls && supercls->forbidsAssociatedObjects()))
128     {
129         rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
130     }
131 
132     // Connect this class to its superclass's subclass lists
133     if (supercls) {
134         addSubclass(supercls, cls);
135     } else {
136         addRootClass(cls);
137     }
138 
139     // Attach categories
140     methodizeClass(cls, previously);
141 
142     return cls;
143 }

我们仍然是通过自己的类 MyPerson 进行分析(系统类毕竟看不见其具体操作,自己写的类更易分析)。

1、源码分析

如下图 2500行(上面源码23行)读取 cls 对应的地址中的 data 信息,并对其进行格式强转, ro 中具体数据信息见下图:

 

源码23行起,所做操作:取 macho 格式中的 data 数据:ro(原始,只读的 干净内存) 进行 class_ro_t 格式强转 --> 开辟 rw(可读写的 脏内存) 空间 --> rw 赋值为 ro --> cls 重新赋值 rw 为 data.

问题:1、为何要在开辟出一份 rw 呢? --> 因为 iOS 的运行时,内存会被不断插入添加删除操作,防止对我们的原始数据的修改,所以 copy 一份干净内存 ro 到 rw 里面

  2、为何有了一个 rw了 还要有一个 rwe 呢?--> 因为并非每个类都会进行动态的操作,为避免内存的大量操作,我们只对进行了动态操作的类进行 rwe。rw 是从 ro 读取拷贝的。

关于 干净/脏内存 可以看下 WWDC 的视频介绍: Advancements in the Objective-C runtime

get_ro 代码:

1)36行 setData(rw)

2)我们继续向下执行(上面源码的62行)

 

realizeClassWithoutSwift() 方法递归:cls 的所有 父类 元类 全部实现确定下来 --> 继承链的确定(这里是 MyPerson 的继承链)

3)继续读代码(上面源码65行起),isa 的设置,继续执行,cls 如下(地址:MyPerson 的元类信息):

此时 bits 仍是无值的,继续执行。

4)setInstanceSize() 执行后 bits 开始有值了,然后继续对 Cxx 信息处理,见下图:

读取一下地址中的数据,各信息都是存在的(见下图)。而我们的内存 bits 目前是 0x00000034。 

放开内部断点直接运行到 main 函数中:

可看到 bits 的内存地址是 0x000280340000003 除了 ‘34’ 其他的值是何时赋的呢?后面再进行探究。

5)我们继续源码的流程,在 Cxx 的处理之后走到 methodizeClass(cls, previously),cls 的方法的处理。 

2、methodizeClass() 方法的处理

源码2:

 1 源码2
 2 /***********************************************************************
 3 * methodizeClass
 4 * Fixes up cls's method list, protocol list, and property list.
 5 * Attaches any outstanding categories.
 6 * Locking: runtimeLock must be held by the caller
 7 **********************************************************************/
 8 static void methodizeClass(Class cls, Class previously)
 9 {
10     runtimeLock.assertLocked();
11 
12     bool isMeta = cls->isMetaClass();
13     auto rw = cls->data();
14     auto ro = rw->ro();
15     auto rwe = rw->ext();
16 
17     // Methodizing for the first time
18     if (PrintConnecting) {
19         _objc_inform("CLASS: methodizing class '%s' %s", 
20                      cls->nameForLogging(), isMeta ? "(meta)" : "");
21     }
22 
23     // Install methods and properties that the class implements itself.
24     method_list_t *list = ro->baseMethods();
25     if (list) {// 方法 list
26         prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
27         if (rwe) rwe->methods.attachLists(&list, 1);
28     }
29 
30     property_list_t *proplist = ro->baseProperties;
31     if (rwe && proplist) {// 属性 list
32         rwe->properties.attachLists(&proplist, 1);
33     }
34 
35     protocol_list_t *protolist = ro->baseProtocols;
36     if (rwe && protolist) {// 协议 list
37         rwe->protocols.attachLists(&protolist, 1);
38     }
39 
40     // Root classes get bonus method implementations if they don't have 
41     // them already. These apply before category replacements.
42     if (cls->isRootMetaclass()) {
43         // root metaclass
44         addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
45     }
46 
47     // Attach categories. 附着关联分类
48     if (previously) {
49         if (isMeta) {
50             objc::unattachedCategories.attachToClass(cls, previously,
51                                                      ATTACH_METACLASS);
52         } else {
53             // When a class relocates, categories with class methods
54             // may be registered on the class itself rather than on
55             // the metaclass. Tell attachToClass to look for those.
56             objc::unattachedCategories.attachToClass(cls, previously,
57                                                      ATTACH_CLASS_AND_METACLASS);
58         }
59     }
60     objc::unattachedCategories.attachToClass(cls, cls,
61                                              isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
62 
63 #if DEBUG
64     // Debug: sanity-check all SELs; log method list contents
65     for (const auto& meth : rw->methods()) {
66         if (PrintConnecting) {
67             _objc_inform("METHOD %c[%s %s]", isMeta ? '+' : '-', 
68                          cls->nameForLogging(), sel_getName(meth.name));
69         }
70         ASSERT(sel_registerName(sel_getName(meth.name)) == meth.name); 
71     }
72 #endif
73 }

方法列表的准备,prepareMethodLists(); 。

 1 static void 
 2 prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
 3                    bool baseMethods, bool methodsFromBundle)
 4 {
 5     runtimeLock.assertLocked();
 6 
 7     if (addedCount == 0) return;
 8 
 9     // There exist RR/AWZ/Core special cases for some class's base methods.
10     // But this code should never need to scan base methods for RR/AWZ/Core:
11     // default RR/AWZ/Core cannot be set before setInitialized().
12     // Therefore we need not handle any special cases here.
13     if (baseMethods) {
14         ASSERT(cls->hasCustomAWZ() && cls->hasCustomRR() && cls->hasCustomCore());
15     }
16 
17     // Add method lists to array.
18     // Reallocate un-fixed method lists.
19     // The new methods are PREPENDED to the method list array.
20 
21     for (int i = 0; i < addedCount; i++) {
22         method_list_t *mlist = addedLists[i];
23         ASSERT(mlist);
24 
25         // Fixup selectors if necessary
26         if (!mlist->isFixedUp()) {
27             // 方法排序
28             fixupMethodList(mlist, methodsFromBundle, true/*sort*/);
29         }
30     }
31 
32     // If the class is initialized, then scan for method implementations
33     // tracked by the class's flags. If it's not initialized yet,
34     // then objc_class::setInitialized() will take care of it.
35     if (cls->isInitialized()) {
36         objc::AWZScanner::scanAddedMethodLists(cls, addedLists, addedCount);
37         objc::RRScanner::scanAddedMethodLists(cls, addedLists, addedCount);
38         objc::CoreScanner::scanAddedMethodLists(cls, addedLists, addedCount);
39     }
40 }

方法排序 fixupMethodList() :

 1 static void 
 2 fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
 3 {
 4     runtimeLock.assertLocked();
 5     ASSERT(!mlist->isFixedUp());
 6 
 7     // fixme lock less in attachMethodLists ?
 8     // dyld3 may have already uniqued, but not sorted, the list
 9     if (!mlist->isUniqued()) {
10         mutex_locker_t lock(selLock);
11     
12         // Unique selectors in list.
13         for (auto& meth : *mlist) {
14             const char *name = sel_cname(meth.name);
15             meth.name = sel_registerNameNoLock(name, bundleCopy);
16         }
17     }
18 
19     // Sort by selector address.
20     // 根据 方法的地址 进行排序
21     /**
22      若方法重名则根据 sel 排序:
23      1、sel 混乱则进行 fixedUp  2、sel 没有混乱则根据 imp 排序
24      */
25     
26     if (sort) {
27         method_t::SortBySELAddress sorter;
28        /**
29         struct method_t {
30             SEL name;
31             const char *types;
32             MethodListIMP imp;
33 
34             struct SortBySELAddress :
35                 public std::binary_function<const method_t&,
36                                             const method_t&, bool>
37             {
38                 bool operator() (const method_t& lhs,
39                                  const method_t& rhs)
40                 { return lhs.name < rhs.name; }// 根据名字进行排序
41             };
42         };
43         */
44         std::stable_sort(mlist->begin(), mlist->end(), sorter);
45     }
46     
47     // Mark method list as uniqued and sorted
48     mlist->setFixedUp();
49 }

方法排序前 ro->baseMethods() 的list:

方法排序后 fixupMethodList() 的 list:

类加载流程的执行总结:

以上我们探究的是本类的加载,我们给本类添加分类后是如何加载的呢?

OC 底层探索 15 继续探究。 

 

posted @ 2020-10-17 19:35  张张_z  阅读(217)  评论(0编辑  收藏  举报