转自:http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html
概念
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
背景
有时会遇到这样一类题目,它的问题可以分解,但是又不能得出明确的动态规划或是递归解法,此时可以考虑用回溯法解决此类问题。回溯法的优点 在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。但是,对于可以得出明显的递推公式迭代求解的问题,还是不要用回溯 法,因为它花费的时间比较长。
先决概念
(1)约束函数:约束函数是根据题意定出的。通过描述合法解的一般特征用于去除不合法的解,从而避免继续搜索出这个不合法解的剩余部分。因此,约束函数是对于任何状态空间树上的节点都有效、等价的。
(2)状态空间树:刚刚已经提到,状态空间树是一个对所有解的图形描述。树上的每个子节点的解都只有一个部分与父节点不同。
(3)扩展节点、活结点、死结点:所谓扩展节点,就是当前正在求出它的子节点的节点,在DFS中,只允许有一个扩展节点。活结点就是通过与约束函数的对照,节点本身和其父节点均满足约束函数要求的节点;死结点反之。由此很容易知道死结点是不必求出其子节点的(没有意义)。
基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。
而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
为什么用DFS
深度优先搜索(DFS)和广度优先搜索(FIFO)
在 分支界限法中,一般用的是FIFO或最小耗费搜索;其思想是一次性将一个节点的所有子节点求出并将其放入一个待求子节点的队列。通过遍历这个队列(队列在 遍历过程中不断增长)完成搜索。而DFS的作法则是将每一条合法路径求出后再转而向上求第二条合法路径。而在回溯法中,一般都用DFS。为什么呢?这是因 为可以通过约束函数杀死一些节点从而节省时间,由于DFS是将路径逐一求出的,通过在求路径的过程中杀死节点即可省去求所有子节点所花费的时间。FIFO 理论上也是可以做到这样的,但是通过对比不难发现,DFS在以这种方法解决问题时思路要清晰非常多。
回溯法可以被认为是一个有过剪枝的DFS过程。
用回溯法解题的一般步骤:
首先,完成下面三个步骤:
(1)描述解的形式,定义一个解空间,它包含问题的所有解。
(2)构造状态空间树。
(3)构造约束函数(用于杀死节点)。
然后就要通过DFS思想完成回溯,完整过程如下:
(1)设置初始化的方案(给变量赋初值,读入已知数据等)。
(2)变换方式去试探,若全部试完则转(7)。
(3)判断此法是否成功(通过约束函数),不成功则转(2)。
(4)试探成功则前进一步再试探。
(5)正确方案还未找到则转(2)。
(6)已找到一种方案则记录并打印。
(7)退回一步(回溯),若未退到头则转(2)。
(8)已退到头则结束或打印无解。
算法框架
(1)问题框架
设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。
(2)非递归回溯框架
1: int a[n],i; 2: 初始化数组a[]; 3: i = 1; 4: while (i>0(有路可走) and (未达到目标)) // 还未回溯到头 5: { 6: if(i > n) // 搜索到叶结点 7: { 8: 搜索到一个解,输出; 9: } 10: else // 处理第i个元素 11: { 12: a[i]第一个可能的值; 13: while(a[i]在不满足约束条件且在搜索空间内) 14: { 15: a[i]下一个可能的值; 16: } 17: if(a[i]在搜索空间内) 18: { 19: 标识占用的资源; 20: i = i+1; // 扩展下一个结点 21: } 22: else 23: { 24: 清理所占的状态空间; // 回溯 25: i = i –1; 26: } 27: }
(3)递归的算法框架
回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:
1: int a[n]; 2: try(int i) 3: { 4: if(i>n) 5: 输出结果; 6: else 7: { 8: for(j = 下界; j <= 上界; j=j+1) // 枚举i所有可能的路径 9: { 10: if(fun(j)) // 满足限界函数和约束条件 11: { 12: a[i] = j; 13: ... // 其他操作 14: try(i+1); 15: 回溯前的清理工作(如a[i]置空值等); 16: } 17: } 18: } 19: }