Exploring Matrix
import java.util.Scanner; public class J714 { /** * @taking input from user */ public static void main(String[] args) { /** * @taking input from user */ Scanner input = new Scanner(System.in); System.out.print("Enter the length of a square matrix: "); int n = input.nextInt(); /** * @declaring the array of n*n size */ int[][] board = new int[n][n]; boolean isSameOnARow = false; boolean isSameOnAColumn = false; boolean isSameOnADiagonal = false; boolean isSameOnASubdiagonal = false; /** * @performing the fucntions */ for (int i = 0; i < board.length; i++) { for (int j = 0; j < board[0].length; j++) { board[i][j] = (int)(Math.random() * 2.0D); System.out.print(board[i][j]); } System.out.println(); } /** * @taking a for loop */ for (int i = 0; i < board.length; i++) { boolean same = true; for (int j = 1; j < board[0].length; j++) { /** * @checking the conditions */ if (board[i][0] != board[i][j]) { same = false; break; } } /** * @checking the conditions */ if (same) { System.out.println("All " + board[i][0] + "'s on row " + i); isSameOnARow = true; } } for (int j = 0; j < board[0].length; j++) { boolean same = true; for (int i = 1; i < board.length; i++) { if (board[0][j] != board[i][j]) { same = false; break; } } if (same) { System.out.println("All " + board[0][j] + "'s on column " + j); isSameOnAColumn = true; } } boolean same = true; for (int i = 1; i < board.length; i++) { if (board[0][0] != board[i][i]) { same = false; break; } } if (same) { System.out.println("All " + board[0][0] + "'s on major diagonal"); isSameOnADiagonal = true; }/** * @checking the conditions */ same = true; for (int i = 1; i < board.length; i++) { if (board[0][(board.length - 1)] != board[i][(board.length - 1 - i)]) { same = false; break; } } /** * @checking the conditions and printing the required elements */ if (same) { System.out.println("All " + board[0][(board.length - 1)] + "'s on sub-diagonal"); isSameOnASubdiagonal = true; } if (!isSameOnARow) { System.out.println("No same numbers on a row"); } if (!isSameOnAColumn) { System.out.println("No same numbers on a column"); } if (!isSameOnADiagonal) { System.out.println("No same numbers on the major diagonal"); } if (!isSameOnASubdiagonal) System.out.println("No same numbers on the sub-diagonal"); } }
import java.util.Scanner; public class ExploringMatrix { public static void main (String[] args) { Scanner scan = new Scanner(System.in); System.out.print("Enter the size for the matrix: "); int size = scan.nextInt(); int[][] m = new int[size][size]; for (int i =0;i<size;i++) { for (int j =0;j<size;j++) { m[i][j] = (int) (Math.random()*2); System.out.print(m[i][j]); } System.out.println(); } boolean letitbe; //Row int j =0; boolean row=false, column=false, major =false, sub = false; for(int i=0; i<size;i++) { letitbe = true; for (j =0;j<size-1;j++) { if (m[i][j] != m[i][j+1]) letitbe = false; } if (letitbe) { System.out.println("All " + m[i][j] + "s on row " + i); row = true; } } //Column for(int i=0; i<size;i++) { letitbe = true; for (j =0;j<size-1;j++) { if (m[j][i] != m[j+1][i]) letitbe = false; } if (letitbe) { System.out.println("All " + m[j][i] + "s on column " + i); column = true; } } //Major diagonal, there is only one eh? letitbe = true; for (int i=0;i<size-1;i++) { if (m[i][i]!= m[i+1][i+1]) letitbe = false; } if (letitbe) { System.out.println("All " + m[0][0] + "s on major diagonal"); major = true; } letitbe = true; for (int i=0;i<size-1;i++) { if (m[i][size-i-1]!= m[i+1][size-i-1-1]) letitbe = false; } if (letitbe) { System.out.println("All " + m[0][size-1] + "s on sub-diagonal"); sub = true; } if ( column == false) System.out.println("No same numbers on a column"); if ( row == false) System.out.println("No same numbers on a row"); if ( major == false) System.out.println("No same numbers on the major diagonal"); if ( sub == false) System.out.println("No same numbers on the sub-diagonal"); } }
Exploring Matricies in Java Problem: Write a program that prompts the user to enter the length of a square matrix, randomly fills in 0s and 1s into the matrix,
prints the matrix, and finds the rows, columns, and diagonals with all 0s or 1s. Output: Enter the size for the matrix: 4 1000 0111 0101 0100 No same numbers on a column No same numbers on a row No same numbers on the major diagonal No same numbers on the sub-diagonal