python去噪算法
《programming computer vision with python 》中denoise 算法有误,从网上好了可用的代码贴上,以便以后使用。
书中错误的代码:
def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100): m,n = im.shape U = U_init Px = im Py = im error = 1 while (error > tolerance): Uold = U GradUx = roll(U,-1,axis=1)-U GradUy = roll(U,-1,axis=0)-U PxNew = Px + (tau/tv_weight)*GradUx PyNew = Py + (tau/tv_weight)*GradUy NormNew = maximum(1,sqrt(PxNew**2+PyNew**2)) Px = PxNew/NormNew py = PyNew/NormNew RxPx = roll(Px,1,axis=1) RyPy = roll(Py,1,axis=0) DivP = (Px - RxPx) + (Py - RyPy) U = im + tv_weight*DivP error = linalg.norm(U-Uold)/sqrt(n*m) return U,im-U
网上可用的代码:
def denoise(im, U_init, tolerance=0.1, tau=0.125, tv_weight=100): """ An implementation of the Rudin-Osher-Fatemi (ROF) denoising model using the numerical procedure presented in Eq. (11) of A. Chambolle (2005). Implemented using periodic boundary conditions (essentially turning the rectangular image domain into a torus!). Input: im - noisy input image (grayscale) U_init - initial guess for U tv_weight - weight of the TV-regularizing term tau - steplength in the Chambolle algorithm tolerance - tolerance for determining the stop criterion Output: U - denoised and detextured image (also the primal variable) T - texture residual""" #---Initialization m,n = im.shape #size of noisy image U = U_init Px = im #x-component to the dual field Py = im #y-component of the dual field error = 1 iteration = 0 #---Main iteration while (error > tolerance): Uold = U #Gradient of primal variable LyU = vstack((U[1:,:],U[0,:])) #Left translation w.r.t. the y-direction LxU = hstack((U[:,1:],U.take([0],axis=1))) #Left translation w.r.t. the x-direction GradUx = LxU-U #x-component of U's gradient GradUy = LyU-U #y-component of U's gradient #First we update the dual varible PxNew = Px + (tau/tv_weight)*GradUx #Non-normalized update of x-component (dual) PyNew = Py + (tau/tv_weight)*GradUy #Non-normalized update of y-component (dual) NormNew = maximum(1,sqrt(PxNew**2+PyNew**2)) Px = PxNew/NormNew #Update of x-component (dual) Py = PyNew/NormNew #Update of y-component (dual) #Then we update the primal variable RxPx =hstack((Px.take([-1],axis=1),Px[:,0:-1])) #Right x-translation of x-component RyPy = vstack((Py[-1,:],Py[0:-1,:])) #Right y-translation of y-component DivP = (Px-RxPx)+(Py-RyPy) #Divergence of the dual field. U = im + tv_weight*DivP #Update of the primal variable #Update of error-measure error = linalg.norm(U-Uold)/sqrt(n*m); iteration += 1; print iteration, error #The texture residual T = im - U print 'Number of ROF iterations: ', iteration return U,T
测试代码:
from numpy import * from numpy import random from scipy.ndimage import filters import rof from scipy.misc import imsave im = zeros((500,500)) im[100:400,100:400] = 128 im[200:300,200:300] = 255 im = im + 30*random.standard_normal((500,500)) imsave('synth_ori.pdf',im) U,T = rof.denoise(im,im,0.07) G = filters.gaussian_filter(im,10) imsave('synth_rof.pdf',U) imsave('synth_gaussian.pdf',G)