手写Word2vec算法实现

1. 语料下载:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 【中文维基百科语料】

2. 语料处理

(1)提取数据集的文本

下载的数据集无法直接使用,需要提取出文本信息。

安装python库:

pip install numpy
pip install scipy
pip install gensim
python代码:
      
'''
Description: 提取中文语料
Author: zhangyh
Date: 2024-05-09 21:31:22
LastEditTime: 2024-05-09 22:10:16
LastEditors: zhangyh
'''
import logging
import os.path
import six
import sys
import warnings

warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
from gensim.corpora import WikiCorpus

if __name__ == '__main__':
     program = os.path.basename(sys.argv[0])
     logger = logging.getLogger(program)
 
     logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
     logging.root.setLevel(level=logging.INFO)
     logger.info("running %s" % ' '.join(sys.argv))
 
     # check and process input arguments
     if len(sys.argv) != 3:
         print("Using: python process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text")
         sys.exit(1)
     inp, outp = sys.argv[1:3]
     space = " "
     i = 0

     output = open(outp, 'w',encoding='utf-8')
     wiki = WikiCorpus(inp, dictionary={})
     for text in wiki.get_texts():
         output.write(space.join(text) + "\n")
         i=i+1
         if (i%10000==0):
             logger.info("Saved " + str(i) + " articles")
 
     output.close()
     logger.info("Finished Saved " + str(i) + " articles")

运行代码提取文本:

PS C:\Users\zhang\Desktop\nlp 自然语言处理\data> python .\process_wiki.py .\zhwiki-latest-pages-articles.xml.bz2 wiki_zh.text
2024-05-09 21:43:10,036: INFO: running .\process_wiki.py .\zhwiki-latest-pages-articles.xml.bz2 wiki_zh.text
2024-05-09 21:44:02,944: INFO: Saved 10000 articles
2024-05-09 21:44:51,875: INFO: Saved 20000 articles
...
2024-05-09 22:22:34,244: INFO: Saved 460000 articles
2024-05-09 22:23:33,323: INFO: Saved 470000 articles

提取后的文本(有繁体字):

(2)转繁体为简体

opencc -i wiki_zh.text -o wiki_sample_chinese.text -c "C:\Program Files\OpenCC\build\share\opencc\t2s.json"
  • 转换后的简体文本如下:

 (3)分词(使用jieba分词)

  • 分词代码:
      
'''
Description: 
Author: zhangyh
Date: 2024-05-10 22:48:45
LastEditTime: 2024-05-10 23:02:57
LastEditors: zhangyh
'''
#文章分词
import jieba
import jieba.analyse
import codecs
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))


# def cut_words(sentence):
#     return " ".join(jieba.cut(sentence)).encode('utf-8')

f=codecs.open('data\\wiki_sample_chinese.text','r',encoding="utf8")
target = codecs.open("data\\wiki_word_cutted_result.text", 'w',encoding="utf8")

line_num=1
line = f.readline()
while line:
    print('---- processing', line_num, 'article----------------')
    line_seg = " ".join(jieba.cut(line))
    target.writelines(line_seg)
    line_num = line_num + 1
    line = f.readline()

f.close()
target.close()


# exit()
# while line:
#     curr = []
#     for oneline in line:
#         #print(oneline)
#         curr.append(oneline)
#     after_cut = map(cut_words, curr)
#     target.writelines(after_cut)
#     print ('saved',line_num,'articles')
#     exit()
#     line = f.readline1()
# f.close()
# target.close()

    
  • 分词后的结果

 

3. 模型训练

(1)skip-gram模型

      
'''
Description: 
Author: zhangyh
Date: 2024-05-12 21:51:03
LastEditTime: 2024-05-16 11:08:59
LastEditors: zhangyh
'''
import numpy as np
import pandas as pd
import pickle
from tqdm import tqdm
import os
import sys
import random

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))


def load_stop_words(file = "作业-skipgram\\stopwords.txt"):
    with open(file,"r",encoding = "utf-8") as f:
        return f.read().split("\n")
    
def load_cutted_data(num_lines: int):
    stop_words = load_stop_words()
    data = []
    # with open('wiki_word_cutted_result.text', mode='r', encoding='utf-8') as file:
    with open('作业-skipgram\\wiki_word_cutted_result.text', mode='r', encoding='utf-8') as file:
        for line in tqdm(file.readlines()[:num_lines]):
            words_list = line.split()
            words_list = [word for word in words_list if word not in stop_words]
            data += words_list
    data = list(set(data))
    return data

def get_dict(data):
    index_2_word = []
    word_2_index = {}
    
    for word in tqdm(data):
        if word not in word_2_index:
            index = len(index_2_word)
            word_2_index[word] = index
            index_2_word.append(word)

    word_2_onehot = {}
    word_size = len(word_2_index)
    for word, index in tqdm(word_2_index.items()):
        one_hot = np.zeros((1, word_size))
        one_hot[0, index] = 1
        word_2_onehot[word] = one_hot

    return word_2_index, index_2_word, word_2_onehot


def softmax(x):
    ex = np.exp(x)
    return ex/np.sum(ex,axis = 1,keepdims = True)

# 负采样
# def negative_sampling(word_2_index, word_count, num_negative_samples):
#     word_probs = [word_count[word]**0.75 for word in word_2_index]
#     word_probs = np.array(word_probs) / sum(word_probs)
#     neg_samples = np.random.choice(len(word_2_index), size=num_negative_samples, replace=True, p=word_probs)
#     return neg_samples


if __name__ == "__main__":

    batch_size = 562  # 定义批量大小

    data = load_cutted_data(5)

    word_2_index, index_2_word, word_2_onehot = get_dict(data)

    word_size = len(word_2_index)
    embedding_num = 100
    lr = 0.01
    epochs = 200
    n_gram = 3
    # num_negative_samples = 5

    # 计算词频
    # word_count = dict.fromkeys(word_2_index, 0)
    # for word in data:
    #     word_count[word] += 1

    batches = [data[j:j+batch_size] for j in range(0, len(data), batch_size)]

    w1 = np.random.normal(-1,1,size = (word_size,embedding_num))
    w2 = np.random.normal(-1,1,size = (embedding_num,word_size))

    for i in range(epochs):
        print(f'-------- epoch {i + 1} --------')
        for batch in tqdm(batches):
            for i in tqdm(range(len(batch))):
                now_word = batch[i]
                now_word_onehot = word_2_onehot[now_word]
                other_words = batch[max(0, i - n_gram): i] + batch[i + 1: min(len(batch), i + n_gram + 1)]
                for other_word in other_words:
                    other_word_onehot = word_2_onehot[other_word]

                    hidden = now_word_onehot @ w1
                    p = hidden @ w2
                    pre = softmax(p)
                    # A @ B = C
                    # delta_C = G
                    # delta_A = G @ B.T
                    # delta_B = A.T @ G
                    G2 = pre - other_word_onehot
                    delta_w2 = hidden.T @ G2
                    G1 = G2 @ w2.T
                    delta_w1 = now_word_onehot.T @ G1

                    w1 -= lr * delta_w1
                    w2 -= lr * delta_w2

    with open("作业-skipgram\\word2vec_skipgram.pkl","wb") as f:
    # with open("word2vec_skipgram.pkl","wb") as f:
        pickle.dump([w1, word_2_index, index_2_word, w2], f) 

    

  

(2)CBOW 模型

      
'''
Description: 
Author: zhangyh
Date: 2024-05-13 20:47:57
LastEditTime: 2024-05-16 09:21:40
LastEditors: zhangyh
'''
import numpy as np
import pandas as pd
import pickle
from tqdm import tqdm
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

def load_stop_words(file = "stopwords.txt"):
    with open(file,"r",encoding = "utf-8") as f:
        return f.read().split("\n")
    
def load_cutted_data(num_lines: int):
    stop_words = load_stop_words()
    data = []
    with open('wiki_word_cutted_result.text', mode='r', encoding='utf-8') as file:
    # with open('作业-CBOW\\wiki_word_cutted_result.text', mode='r', encoding='utf-8') as file:
        for line in tqdm(file.readlines()[:num_lines]):
            words_list = line.split()
            words_list = [word for word in words_list if word not in stop_words]
            data += words_list
    data = list(set(data))
    return data

def get_dict(data):
    index_2_word = []
    word_2_index = {}
    
    for word in tqdm(data):
        if word not in word_2_index:
            index = len(index_2_word)
            word_2_index[word] = index
            index_2_word.append(word)

    word_2_onehot = {}
    word_size = len(word_2_index)
    for word, index in tqdm(word_2_index.items()):
        one_hot = np.zeros((1, word_size))
        one_hot[0, index] = 1
        word_2_onehot[word] = one_hot

    return word_2_index, index_2_word, word_2_onehot

def softmax(x):
    ex = np.exp(x)
    return ex/np.sum(ex,axis = 1,keepdims = True)


if __name__ == "__main__":

    batch_size = 562  
    data = load_cutted_data(5)

    word_2_index, index_2_word, word_2_onehot = get_dict(data)

    word_size = len(word_2_index)
    embedding_num = 100
    lr = 0.01
    epochs = 200
    context_window = 3


    batches = [data[j:j+batch_size] for j in range(0, len(data), batch_size)]

    w1 = np.random.normal(-1,1,size = (word_size,embedding_num))
    w2 = np.random.normal(-1,1,size = (embedding_num,word_size))

    for i in range(epochs):
        print(f'-------- epoch {i + 1} --------')
        for batch in tqdm(batches):
            for i in tqdm(range(len(batch))):
                target_word = batch[i]
                context_words = batch[max(0, i - context_window): i] + batch[i + 1: min(len(batch), i + context_window + 1)]
                
                # 获取上下文词的词向量的平均值作为输入
                context_vectors = np.mean([word_2_onehot[word] for word in context_words], axis=0)

                # 计算输出层
                hidden = context_vectors @ w1
                p = hidden @ w2
                pre = softmax(p)
                
                # 交叉熵损失函数
                # loss = -np.log(pre[word_2_index[target_word], 0])
                
                # 反向传播更新参数
                G2 = pre - word_2_onehot[target_word]
                delta_w2 = hidden.T @ G2
                G1 = G2 @ w2.T
                delta_w1 = context_vectors.T @ G1

                w1 -= lr * delta_w1
                w2 -= lr * delta_w2

    # with open("作业-CBOW\\word2vec_cbow.pkl","wb") as f:
    with open("word2vec_cbow.pkl","wb") as f:
        pickle.dump([w1, word_2_index, index_2_word, w2], f)



    

  

4. 训练结果

(1)余弦相似度计算

      
'''
Description: 
Author: zhangyh
Date: 2024-05-13 20:12:56
LastEditTime: 2024-05-16 21:16:19
LastEditors: zhangyh
'''
import pickle
import numpy as np

# w1, voc_index, index_voc, w2 = pickle.load(open('word2vec_cbow.pkl','rb'))
w1, voc_index, index_voc, w2 = pickle.load(open('作业-CBOW\\word2vec_cbow.pkl','rb'))

def word_voc(word):
    return w1[voc_index[word]]

def voc_sim(word, top_n):
    v_w1 = word_voc(word)
    word_sim = {}
    for i in range(len(voc_index)):
        v_w2 = w1[i]
        theta_sum = np.dot(v_w1, v_w2)
        theta_den = np.linalg.norm(v_w1) * np.linalg.norm(v_w2)
        theta = theta_sum / theta_den
        word = index_voc[i]
        word_sim[word] = theta
    words_sorted = sorted(word_sim.items(), key=lambda kv: kv[1], reverse=True)
    for word, sim in words_sorted[:top_n]:
        # print(f'word: {word}, similiar: {sim}, vector: {w1[voc_index[word]]}')
        print(f'word: {word}, similiar: {sim}')


voc_sim('学院', 20)

    

  

(2)可视化展示

      
'''
Description: 
Author: zhangyh
Date: 2024-05-16 21:41:33
LastEditTime: 2024-05-17 23:50:07
LastEditors: zhangyh
'''
import numpy as np
import pandas as pd
import pickle
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['Microsoft YaHei', 'SimHei', 'sans-serif']

# Load trained word embeddings
with open("word2vec_cbow.pkl", "rb") as f:
    w1, word_2_index, index_2_word, w2 = pickle.load(f)

# Select specific words for visualization
visual_words = ['研究', '电脑', '雅典', '数学', '数学家', '学院', '函数', '定理', '实数', '复数']

# Get the word vectors corresponding to the selected words
subset_vectors = np.array([w1[word_2_index[word]] for word in visual_words])

# Perform PCA for dimensionality reduction
pca = PCA(n_components=2)
reduced_vectors = pca.fit_transform(subset_vectors)

# Visualization
plt.figure(figsize=(10, 8))
plt.scatter(reduced_vectors[:, 0], reduced_vectors[:, 1], marker='o')
for i, word in enumerate(visual_words):
    plt.annotate(word, xy=(reduced_vectors[i, 0], reduced_vectors[i, 1]), xytext=(5, 2),
                 textcoords='offset points', ha='right', va='bottom')
plt.title('Word Embeddings Visualization')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
plt.show()

 (3)类比实验探索(例如:王子 - 男 + 女 = 公主)

'''
Description: 
Author: zhangyh
Date: 2024-05-16 23:13:21
LastEditTime: 2024-05-19 11:51:53
LastEditors: zhangyh
'''
import numpy as np
import pickle
from sklearn.metrics.pairwise import cosine_similarity

# 加载训练得到的词向量
with open("word2vec_cbow.pkl", "rb") as f:
    w1, word_2_index, index_2_word, w2 = pickle.load(f)

# 计算类比关系
v_prince = w1[word_2_index["王子"]]
v_man = w1[word_2_index["男"]]
v_woman = w1[word_2_index["女"]]
v_princess = v_prince - v_man + v_woman

# 找出最相近的词向量
similarities = cosine_similarity(v_princess.reshape(1, -1), w1)
most_similar_index = np.argmax(similarities)
most_similar_word = index_2_word[most_similar_index]

print("结果:", most_similar_word)

  

posted @ 2024-05-19 11:52  映辉  阅读(64)  评论(0编辑  收藏  举报