Uva - 10129 - Play on Words
把单词收尾字母当作每条边的起点和终点,就抽象为一个有向图,判断有向图是否存在欧拉路。用到图论的知识,有向图最多只能有两个点的入度不等于出度,而且起点必须是出度恰好比入度大1,终点入度比出度大1,并且有向图的无向图是连通的。判断连通性用dfs方法判断。
AC代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cctype> #include <cstring> #include <string> #include <sstream> #include <vector> #include <set> #include <map> #include <algorithm> #include <stack> #include <queue> #include <bitset> #include <cassert> using namespace std; const int maxv = 26; const int maxn = 1005; int G[maxv][maxv]; int inDeg[maxv]; // 每个点的入度数 int outDeg[maxv]; // 每个点的出度数 int vis[maxv]; void dfs(int u) { vis[u] = true; for (int i = 0; i < maxv; i++) { if (G[u][i] > 0) { G[u][i]--; G[i][u]--; dfs(i); } } } // 判断度数是否满足 bool okDeg() { bool star = false; bool end = false; for (int i = 0; i < maxv; i++) { if (inDeg[i] != outDeg[i]) { if (!end && inDeg[i] == outDeg[i] + 1) { // 终点 end = true; } else if (!star && inDeg[i] + 1 == outDeg[i]) { // 起点 star = true; } else { return false; } } } return true; } bool okDfs() { for (int u = 0; u < maxv; u++) { if (inDeg[u] + outDeg[u]) { if (vis[u] == false) { return false; } } } return true; } int main() { ios::sync_with_stdio(false); int T; cin >> T; while (T--) { memset(G, 0, sizeof(G)); memset(inDeg, 0, sizeof(inDeg)); memset(outDeg, 0, sizeof(outDeg)); memset(vis, 0, sizeof(vis)); int edge, star; cin >> edge; while (edge--) { char ch[maxn]; cin >> ch; int u = ch[0] - 'a'; int v = ch[strlen(ch) - 1] - 'a'; inDeg[u]++; outDeg[v]++; G[u][v]++; G[v][u]++; star = u; } dfs(star); if (okDfs() && okDeg()) { cout << "Ordering is possible.\n"; } else { cout << "The door cannot be opened.\n"; } } return 0; }