Uva - 439 - Knight Moves
、
bfs求最短路,经典数据结构题目。
AC代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cctype> #include <cstring> #include <string> #include <sstream> #include <vector> #include <set> #include <map> #include <algorithm> #include <stack> #include <queue> #include <bitset> #include <cassert> #include <cmath> using namespace std; const int maxn = 8; int r1, c1, r2, c2; int vis[maxn][maxn]; // 记录访问状态 const int dr[] = { -2, -2, -1, -1, 1, 1, 2, 2 }; const int dc[] = { -1, 1, -2, 2, -2, 2, -1, 1 }; struct State { int r, c, cnt; State(int r = 0, int c = 0, int cnt = 0) : r(r), c(c), cnt(cnt) {} bool operator==(const State& rhs) // 重载==操作符 { return r == rhs.r && c == rhs.c; } }; // 把列也转化成数字来维护 void tr(char* p, int &r, int &c) { r = p[0] - 'a'; c = p[1] - '1'; } // bfs求最短路,并维护cnt int bfs() { State f(r1, c1, 0), t(r2, c2); if (f == t) { return 0; } queue<State> q; q.push(f); vis[r1][c1] = 1; while (!q.empty()) { State s = q.front(); q.pop(); if (s == t) { return s.cnt; } for (int i = 0; i < maxn; i++) { int nr, nc; nr = s.r + dr[i]; nc = s.c + dc[i]; if (nr >= 0 && nr < 8 && nc >= 0 && nc < 8 && !vis[nr][nc]) { q.push(State(nr, nc, s.cnt+1)); vis[nr][nc] = 1; } } } return -1; } int main() { char p1[3]; char p2[3]; while (scanf("%s%s", p1, p2) != EOF) { tr(p1, r1, c1); tr(p2, r2, c2); memset(vis, 0, sizeof(vis)); int cnt = bfs(); printf("To get from %s to %s takes %d knight moves.\n", p1, p2, cnt); } return 0; }