混合高斯模型(Mixtures of Gaussians)和EM算法
混合高斯模型(Mixtures of Gaussians)和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。
与k-means一样,给定的训练样本是,我们将隐含类别标签用
表示。与k-means的硬指定不同,我们首先认为
是满足一定的概率分布的,这里我们认为满足多项式分布,
,其中
,
有k个值{1,…,k}可以选取。而且我们认为在给定
后,
满足多值高斯分布,即
。由此可以得到联合分布
。
整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个
,然后根据
所对应的k个多值高斯分布中的一个生成样例
,。整个过程称作混合高斯模型。注意的是这里的
仍然是隐含随机变量。模型中还有三个变量
和
。最大似然估计为
。对数化后如下:
这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的,那么上式可以简化为:
就是样本类别中
的比率。
是类别为j的样本特征均值,
是类别为j的样例的特征的协方差矩阵。
实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。
之前我们是假设给定了,实际上
是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:
在E步中,我们将其他参数看作常量,计算
的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,
值又不对了,需要重新计算,周而复始,直至收敛。
这个式子利用了贝叶斯公式。
对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。
虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理