摘要:
一、统计数据频率 1. values_counts 参数详解 参数示例讲解 In [21]: data=pd.DataFrame(pd.Series([1,2,3,4,5,6,11,1,1,1,1,2,2,2,2,3]).values.reshape(4,4),columns=['a','b','c 阅读全文
摘要:
目录 1. 折线图 2. 柱状图 3. 直方图 4. 箱线图 5. 区域图 6. 散点图 7. 饼图六边形容器图 数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出结果, 数据可视化是必不可少的一个环节。这里带大家来看下一些常用的图形的画法。 数据准备 Panda 阅读全文
摘要:
目录 1. 拼接 1.1 append 1.2 concat 2. 关联 2.1 merge 2.2 join 数据准备 # 导入相关库 import numpy as np import pandas as pd """ 拼接 有两个DataFrame,都存储了用户的一些信息,现在要拼接起来,组成 阅读全文
摘要:
目录 1. 将对象分割成组 1.1 关闭排序 1.2 选择列 1.3 遍历分组 1.4 选择一个组 2. 聚合 2.1 一次应用多个聚合操作 2.2 对DataFrame列应用不同的聚合操作 3. transform 操作 4. apply 操作 数据准备 1.将对象分割成组 在进行分组统计前,首先 阅读全文