HuggingFace | 使用Roberta训练一个牛客网讨论贴文本分类模型
训练一个NLU模型
本文将使用trainer 训练一个牛客网讨论帖文本分类模型。详细过程如下:
构建数据集
数据集下载链接:
正常的训练演示用这两个数据集就够了,如果需要训练很精确的模型,可以使用伪标签大数据集generated pesudo data
数据集的结构如下:
每条数据包含一个文本和一个label,label为: [招聘信息、 经验贴、 求助贴] 三种类型之一。
我们需要加载数据集,并将文本tokenize成id,代码如下:
import pandas as pd
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification
model_name = "uer/chinese_roberta_L-4_H-512"
max_input_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
tokenizer = AutoTokenizer.from_pretrained(model_name)
def preprocess_function(examples):
model_inputs = tokenizer(examples["text"], max_length=max_input_length, truncation=True)
labels = [label2id[x] for x in examples['target']]
model_inputs["labels"] = labels
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets['train'].column_names)
定义评价指标函数
评价指标metric用于evaluate的时候衡量模型的表现,这里使用f1 score 和 accuracy
import numpy as np
from sklearn.metrics import f1_score, accuracy_score, classification_report
from transformers import EvalPrediction
def multi_label_metrics(predictions, labels, threshold=0.5):
probs = np.argmax( predictions, -1)
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=probs, average='micro')
accuracy = accuracy_score(y_true, probs)
print(classification_report([id2label[x] for x in y_true], [id2label[x] for x in probs]))
# return as dictionary
metrics = {'f1': f1_micro_average,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
result = multi_label_metrics(predictions=preds, labels=p.label_ids)
return result
指定模型的训练参数
加载模型,并构建TrainingArguments类,用于指定模型训练的各种参数
第一个是训练保存地址为必填项,其他都是选填项
from transformers import TrainingArguments, Trainer
model = AutoModelForSequenceClassification.from_pretrained(model_name,
# problem_type="multi_label_classification",
num_labels=3,
# id2label=id2label,
# label2id=label2id
)
batch_size = 64
metric_name = "f1"
training_args = TrainingArguments(
output_dir="./out",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-4,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
# gradient_accumulation_steps=2,
num_train_epochs=10,
save_total_limit=1,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
fp16=True,
)
定义trainer并进行训练
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train() # 开始训练
测试预测
print("test")
print(trainer.evaluate()) # 测试
trainer.save_model("bert") #保存模型
# 进行模型预测,并将预测结果输出便于观察
predictions, labels, _ = trainer.predict(tokenized_datasets["test"])
predictions = np.argmax(predictions, axis=-1)
print(predictions)
print(labels)
代码整合
将上面代码整合到一起,结果如下:
import pandas as pd
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score, classification_report
from transformers import EvalPrediction
import evaluate
metric = evaluate.load("seqeval")
model_name = "uer/chinese_roberta_L-4_H-512"
tokenizer = AutoTokenizer.from_pretrained(model_name)
max_input_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
def preprocess_function(examples):
model_inputs = tokenizer(examples["text"], max_length=max_input_length, truncation=True)
labels = [label2id[x] for x in examples['target']]
model_inputs["labels"] = labels
return model_inputs
raw_datasets = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'})
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets['train'].column_names)
def multi_label_metrics(predictions, labels, threshold=0.5):
probs = np.argmax( predictions, -1)
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=probs, average='micro')
accuracy = accuracy_score(y_true, probs)
print(classification_report([id2label[x] for x in y_true], [id2label[x] for x in probs]))
# return as dictionary
metrics = {'f1': f1_micro_average,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
result = multi_label_metrics(predictions=preds, labels=p.label_ids)
return result
model = AutoModelForSequenceClassification.from_pretrained(model_name,
# problem_type="multi_label_classification",
num_labels=3,
# id2label=id2label,
# label2id=label2id
)
batch_size = 64
metric_name = "f1"
training_args = TrainingArguments(
f"/root/autodl-tmp/run",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-4,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
# gradient_accumulation_steps=2,
num_train_epochs=10,
save_total_limit=1,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
fp16=True,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
print("test")
print(trainer.evaluate())
trainer.save_model("bert") # 模型保存到当前文件夹的名为bert文件夹下。
predictions, labels, _ = trainer.predict(tokenized_datasets["test"])
predictions = np.argmax(predictions, axis=-1)
print(predictions)
print(labels)
模型推理预测
使用训练好的模型在其他数据集上推理预测,新数据集是从牛客网爬取的帖子信息,接近4万条,数据链接: historical_data
数据截图如下:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import pandas as pd
import torch
data = pd.read_excel("historical_data.xlsx", sheet_name=0).fillna(" ")
data['text'] = data['title'].apply(lambda x : str(x) if x else "") + data['content'].apply(lambda x : str(x) if x else "")
model_name = "bert"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if torch.cuda.is_available():
device = "cuda:0"
model.half()
else:
device = "cpu"
model = model.to(device)
max_target_length = 128
label2id = {
'招聘信息':0,
'经验贴':1,
'求助贴':2
}
id2label = {v:k for k,v in label2id.items()}
def get_answer(text):
text = [x for x in text]
inputs = tokenizer( text, return_tensors="pt", max_length=max_target_length, padding=True, truncation=True)
inputs = {k:v.to(device) for k,v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs).logits.argmax(-1).tolist()
return outputs
# print(get_answer(data['text'][:10]))
pred , grod = [], []
index, batch_size = 0, 32
while index < len(data['text']):
pred.extend(get_answer([x for x in data['text'][index:index + batch_size]]))
index += batch_size
# print(pred)
# print(grod)
pred = [id2label[x] for x in pred]
data["target"] = pred
writer = pd.ExcelWriter("generate.xlsx")
data.to_excel(writer, index=False, encoding='utf-8', sheet_name='Sheet1')
writer.save()
writer.close()
生成一个generate.xlsx
文件。
generate.xlsx
文件为:
任务为:title
和content
整合成text
,然后进行训练,输出为【求助帖、招聘信息、经验贴】中的一种,也就是预测成的target
。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)