PyTorch | torch.save()函数的使用
Pytorch保存模型等相关参数,利用torch.save()
,以及读取保存之后的文件。
函数信息
torch.save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL,_use_new_zipfile_serialization=True)
作用:将对象保存到磁盘文件。
参数:
- obj (object) – 保存的对象
- f (Union[str, PathLike, BinaryIO, IO[bytes]]) – 类似文件的对象(必须实现写入和刷新)或包含文件名的字符串或 os.PathLike 对象
- pickle_module (Any) – 用于pickling元数据和对象的模块
- pickle_protocol (int) – 可以指定覆盖默认协议
PyTorch 1.6 版本改用
torch.save
新的基于 zipfile 的文件格式。torch.load
仍然保留加载旧格式文件的能力。如果出于任何原因您想torch.save
使用旧格式,请传递 kwarg_use_new_zipfile_serialization=False
。
注意:
- 一种常见的PyTorch约定是使用
.pt
或.pth
文件扩展名保存张量。
例子:
# Save to file
x = torch.tensor([0, 1, 2, 3, 4])
torch.save(x, 'tensor.pt')
# Save to io.BytesIO buffer
buffer = io.BytesIO()
torch.save(x, buffer)
模型的保存与加载
1、保存
- 建立一个字典:
state = {
"step": step,
"epoch": epoch,
"model": model.state_dict(),
"optimizer": optimizer.state_dict()
}
- 调用
torch.save(state,dir)
:
checkpoint_dir = os.path.join(params.output,"model-final.pt")
torch.save(state, checkpoint_dir)
其中dir表示保存文件的绝对路径+保存文件名,如'/home/zlq/fine-turn/out/model-final.pt'。
2、加载
用来加载模型。torch.load()
使用 Python 的 解压工具(unpickling)来反序列化 pickled object 到对应存储设备上。首先在 CPU 上对压缩对象进行反序列化并且移动到它们保存的存储设备上,如果失败了(如:由于系统中没有相应的存储设备),就会抛出一个异常。用户可以通过 register_package
进行扩展,使用自己定义的标记和反序列化方法。
当你想恢复某一阶段的训练(或者进行测试)时,那么就可以读取之前保存的网络模型参数等。
checkpoint = torch.load(checkpoint_dir)
model.load_state_dict(checkpoint[‘model’])
optimizer.load_state_dict(checkpoint[‘optimizer’])
start_epoch = checkpoint[‘epoch’] + 1
模型的保存与加载的使用情况
1、state_dict(推荐)
- 保存:
torch.save(model.state_dict(), PATH)
- 加载:
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()
保存模型的推理过程的时候,只需要保存模型训练好的参数,使用torch.save()
保存state_dict,能够方便模型的加载。因此推荐使用这种方式进行模型保存。
记住一定要使用model.eval()来固定dropout和归一化层,否则每次推理会生成不同的结果。
注意,load_state_dict()需要传入字典对象,因此需要先反序列化state_dict再传入load_state_dict()
2、整个模型
- 保存
torch.save(model, PATH)
- 加载
# 模型类必须在别的地方定义
model = torch.load(PATH)
model.eval()
这种保存/加载模型的过程使用了最直观的语法,所用代码量少。这使用Python的pickle保存所有模块。这种方法的缺点是,保存模型的时候,序列化的数据被绑定到了特定的类和确切的目录。这是因为pickle不保存模型类本身,而是保存这个类的路径,并且在加载的时候会使用。因此,当在其他项目里使用或者重构的时候,加载模型的时候会出错。
一般来说,PyTorch的模型以.pt或者.pth文件格式保存。
一定要记住在评估模式的时候调用model.eval()来固定dropout和批次归一化。否则会产生不一致的推理结果。
3、保存加载用于推理的常规Checkpoint/或继续训练
- 保存
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)
- 加载
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - 或者 -
model.train()
在保存用于推理或者继续训练的常规检查点的时候,除了模型的state_dict之外,还必须保存其他参数。保存优化器的state_dict也非常重要,因为它包含了模型在训练时候优化器的缓存和参数。除此之外,还可以保存停止训练时epoch数,最新的模型损失,额外的torch.nn.Embedding层等。
要保存多个组件,则将它们放到一个字典中,然后使用torch.save()序列化这个字典。一般来说,使用.tar文件格式来保存这些检查点。
加载各个组件,首先初始化模型和优化器,然后使用torch.load()加载保存的字典,然后可以直接查询字典中的值来获取保存的组件。
同样,评估模型的时候一定不要忘了调用model.eval()。
4、保存多个模型到一个文件
- 保存
torch.save({
'modelA_state_dict': modelA.state_dict(),
'modelB_state_dict': modelB.state_dict(),
'optimizerA_state_dict': optimizerA.state_dict(),
'optimizerB_state_dict': optimizerB.state_dict(),
...
}, PATH)
- 加载
modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)
checkpoint = torch.load(PATH)
modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])
modelA.eval()
modelB.eval()
# - 或者 -
modelA.train()
modelB.train()
保存的模型包含多个
torch.nn.Modules
时,比如GAN,一个序列-序列模型,或者组合模型,使用与保存常规检查点的方式来保存模型。也就是说,保存每个模型的state_dict和对应的优化器到一个字典中。我们可以保存任何能帮助我们继续训练的东西到这个字典中。
5、使用其他模型来预热当前模型
- 保存
torch.save(modelA.state_dict(), PATH)
- 加载
modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)
在迁移学习或者训练新的复杂模型时,加载部分模型是很常见的。利用经过训练的参数,即使只有少数参数可用,也将有助于预热训练过程,并且使模型更快收敛。
在加载部分模型参数进行预训练的时候,很可能会碰到键不匹配的情况(模型权重都是按键值对的形式保存并加载回来的)。因此,无论是缺少键还是多出键的情况,都可以通过在load_state_dict()函数中设定strict参数为False来忽略不匹配的键。
如果想将某一层的参数加载到其他层,但是有些键不匹配,那么修改state_dict中参数的key可以解决这个问题。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)