摘要:
一、项目目录 二、data_clean生成数据 from common.root_path import root import os import pandas as pd class DataMerge(object): def __init__(self): self.data_path = 阅读全文
摘要:
一、理论学习 1、胶囊结构 胶囊可以看成一种向量化的神经元。对于单个神经元而言,目前的深度网络中流动的数据均为标量。例如多层感知机的某一个神经元,其输入为若干个标量,输出为一个标量(不考虑批处理);而对于胶囊而言,每个神经元输入为若干个向量,输出为一个向量(不考虑批处理)。前向传播如下所示: 其中I 阅读全文
摘要:
中文字、词Bert向量生成利用Bert预训练模型生成中文的字、词向量,字向量是直接截取Bert的输出结果;词向量则是把词语中的每个字向量进行累计求平均(毕竟原生Bert是基于字符训练的),Bert预训练模型采用的是科大讯飞的chinese_wwm_ext_pytorch,网盘下载地址: 链接:htt 阅读全文
摘要:
Focal Loss for Dense Object Detection 是ICCV2017的Best student paper,文章思路很简单但非常具有开拓性意义,效果也非常令人称赞。 GHM(gradient harmonizing mechanism) 发表于 “Gradient Harm 阅读全文
摘要:
1.为什么需要好的权重初始化 网络训练的过程中, 容易出现梯度消失(梯度特别的接近0)和梯度爆炸(梯度特别的大)的情况,导致大部分反向传播得到的梯度不起作用或者起反作用. 研究人员希望能够有一种好的权重初始化方法: 让网络前向传播或者反向传播的时候, 卷积的输出和前传的梯度比较稳定. 合理的方差既保 阅读全文
摘要:
一、xgboost类库实用小结 在XGBoost算法原理小结中,我们讨论了XGBoost的算法原理,这一片我们讨论如何使用XGBoost的Python类库,以及一些重要参数的意义和调参思路。 本文主要参考了XGBoost的Python文档 和 XGBoost的参数文档。 1. XGBoost类库概述 阅读全文
摘要:
一、将收集到的语料进行文本预处理 1)train.txt预处理为train.csv,格式为id,内容,标签 使用excel打开train.txt然后选择分隔符为英文逗号,这样内容在一列,然后再为他们添加id,从1-900,接着添加标签,0,1,2分别表示财经,体育,军事。最后另存为csv文件。 2) 阅读全文
摘要:
做nlp的时候,如果用到tf-idf,sklearn中用CountVectorizer与TfidfTransformer两个类,下面对和两个类进行讲解 一、训练以及测试 CountVectorizer与TfidfTransformer在处理训练数据的时候都用fit_transform方法,在测试集用 阅读全文
摘要:
摘要 Scene text with an irregular layout is difficult to recognize. To this end, a S equential T ransformation A ttention-based N etwork (STAN), which c 阅读全文
摘要:
3、方法 In this section, we introduce the proposed VSRNet which aims to jointly retrieve the corresponding videos and locate the related segments accordi 阅读全文