变分自编码器(八):估计样本概率密度
在本系列的前面几篇文章中,我们已经从多个角度来理解了VAE,一般来说,用VAE是为了得到一个生成模型,或者是做更好的编码模型,这都是VAE的常规用途。但除了这些常规应用外,还有一些“小众需求”,比如用来估计
本文就从估计概率密度的角度来了解和推导一下VAE模型。
两个问题 #
所谓估计概率密度,就是在已知样本
但这纯粹都只是理论形式,还有诸多问题没有解决,主要可以归为两个大问题:
1、用什么样的
去拟合; 2、用什么方法去求解上述目标。
混合模型 #
第一个问题,我们自然是希望
直接的做法做不到,那么我们就往间接的角度想,构建混合模型:
其中
从生成模型的角度来看,上述模型被解释为先从
重要采样 #
但式
为此,我们要想办法缩小一下采样空间。首先,我们通常会将
具体来说,我们引入一个新的分布
这样一来我们将从
训练目标 #
至此,我们解决了第一个问题:用什么分布,以及怎么去更好地计算这个分布。剩下的问题就是如何训练了。
其实有了重要性采样的概念后,我们就不用考虑什么ELBO之类的了,直接使用目标
事实上,如果
这其实已经就是常规VAE的训练目标了。如果采样
这就是“重要性加权自编码器”了,出自《Importance Weighted Autoencoders》,它被视为VAE的加强。总的来说,通过重要性采样的角度,我们可以绕过传统VAE的ELBO等繁琐推导,也可以不用《变分自编码器(二):从贝叶斯观点出发》所介绍的联合分布视角,直接得到VAE模型甚至其改进版。
文章小结 #
本文从估计样本的概率密度这一出发点介绍了变分自编码器VAE,结合重要性采样,我们可以得到VAE的一个快速推导,完全避开ELBO等诸多繁琐细节。
转载到请包括本文地址:https://spaces.ac.cn/archives/8791
更详细的转载事宜请参考:《科学空间FAQ》
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧