变分自编码器(一):原来是这么一回事
过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。于是趁着最近看概率图模型的三分钟热度,我决定也争取把VAE搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看实现的代码,又感觉实现代码跟理论完全不是一回事啊。
终于,东拼西凑再加上我这段时间对概率模型的一些积累,并反复对比原论文《Auto-Encoding Variational Bayes》,最后我觉得我应该是想明白了。其实真正的VAE,跟很多教程说的的还真不大一样,很多教程写了一大通,都没有把模型的要点写出来~于是写了这篇东西,希望通过下面的文字,能把VAE初步讲清楚。
分布变换 #
通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量
那现在假设
虽然遇到困难,但还是要想办法解决的。GAN的思路很直接粗犷:既然没有合适的度量,那我干脆把这个度量也用神经网络训练出来吧。就这样,WGAN就诞生了,详细过程请参考《互怼的艺术:从零直达WGAN-GP》。而VAE则使用了一个精致迂回的技巧。
VAE慢谈 #
这一部分我们先回顾一般教程是怎么介绍VAE的,然后再探究有什么问题,接着就自然地发现了VAE真正的面目。
经典回顾 #
首先我们有一批数据样本
这里我们就不区分求和还是求积分了,意思对了就行。此时
看出了什么问题了吗?如果像这个图的话,我们其实完全不清楚:究竟经过重新采样出来的
VAE初现 #
其实,在整个VAE模型中,我们并没有去使用
具体来说,给定一个真实样本
事实上,在论文《Auto-Encoding Variational Bayes》的应用部分,也特别强调了这一点:
In this case, we can let the
variational approximate posterior be a multivariate Gaussian with a diagonal covariance structure:(注:这里是直接摘录原论文,本文所用的符号跟原论文不尽一致,望读者不会混淆。)
论文中的式
回到本文,这时候每一个
于是我们构建两个神经网络
分布标准化 #
让我们来思考一下,根据上图的训练过程,最终会得到什么结果。
首先,我们希望重构
说白了,模型会慢慢退化成普通的AutoEncoder,噪声不再起作用。
这样不就白费力气了吗?说好的生成模型呢?
别急别急,其实VAE还让所有的
这样我们就能达到我们的先验假设:
那怎么让所有的
因为它们分别代表了均值
这里的
推导
由于我们考虑的是各分量独立的多元正态分布,因此只需要推导一元正态分布的情形即可,根据定义我们可以写出整个结果分为三项积分,第一项实际上就是
乘以概率密度的积分(也就是1),所以结果是 ;第二项实际是正态分布的二阶矩,熟悉正态分布的朋友应该都清楚正态分布的二阶矩为 ;而根据定义,第三项实际上就是“-方差除以方差=-1”。所以总结果就是 .
重参数技巧 #
最后是实现模型的一个技巧,英文名是reparameterization trick,我这里叫它做重参数吧。其实很简单,就是我们要从
这说明
从中采样一个 ,相当于从 中采样一个 ,然后让 。
于是,我们将从
具体怎么实现,大家把上述文字对照着代码看一下,一下子就明白了~
后续分析 #
即便把上面的所有内容都搞清楚了,面对VAE,我们可能还存有很多疑问。
本质是什么 #
VAE的本质是什么?VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,这已经让人意外了:Encoder不是用来Encode的,是用来算均值和方差的,这真是大新闻了,还有均值和方差不都是统计量吗,怎么是用神经网络来算的?
事实上,我觉得VAE从让普通人望而生畏的变分和贝叶斯理论出发,最后落地到一个具体的模型中,虽然走了比较长的一段路,但最终的模型其实是很接地气的:它本质上就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果decoder能够对噪声有鲁棒性;而那个额外的KL loss(目的是让均值为0,方差为1),事实上就是相当于对encoder的一个正则项,希望encoder出来的东西均有零均值。
那另外一个encoder(对应着计算方差的网络)的作用呢?它是用来动态调节噪声的强度的。直觉上来想,当decoder还没有训练好时(重构误差远大于KL loss),就会适当降低噪声(KL loss增加),使得拟合起来容易一些(重构误差开始下降);反之,如果decoder训练得还不错时(重构误差小于KL loss),这时候噪声就会增加(KL loss减少),使得拟合更加困难了(重构误差又开始增加),这时候decoder就要想办法提高它的生成能力了。
说白了,重构的过程是希望没噪声的,而KL loss则希望有高斯噪声的,两者是对立的。所以,VAE跟GAN一样,内部其实是包含了一个对抗的过程,只不过它们两者是混合起来,共同进化的。从这个角度看,VAE的思想似乎还高明一些,因为在GAN中,造假者在进化时,鉴别者是安然不动的,反之亦然。当然,这只是一个侧面,不能说明VAE就比GAN好。GAN真正高明的地方是:它连度量都直接训练出来了,而且这个度量往往比我们人工想的要好(然而GAN本身也有各种问题,这就不展开了)。
从这个讨论中,我们也可以看出,当然,每个
正态分布? #
对于
估计不大可行,这还是因为KL散度的计算公式:
要是在某个区域中
当然,非得要用均匀分布也不是不可能,就是算好两个均匀分布的KL散度,然后做好除零错误处理,加大重构loss的权重,等等~但这样就显得太丑陋了。
变分在哪里 #
还有一个有意思(但不大重要)的问题是:VAE叫做“变分自编码器”,它跟变分法有什么联系?在VAE的论文和相关解读中,好像也没看到变分法的存在呀?
呃~其实如果读者已经承认了KL散度的话,那VAE好像真的跟变分没多大关系了~因为理论上对于KL散度
固定概率分布(或 )的情况下,对于任意的概率分布 (或 ),都有 ,而且只有当 时才等于零。
因为
一句话,VAE的名字中“变分”,是因为它的推导过程用到了KL散度及其性质。
条件VAE #
最后,因为目前的VAE是无监督训练的,因此很自然想到:如果有标签数据,那么能不能把标签信息加进去辅助生成样本呢?这个问题的意图,往往是希望能够实现控制某个变量来实现生成某一类图像。当然,这是肯定可以的,我们把这种情况叫做Conditional VAE,或者叫CVAE。(相应地,在GAN中我们也有个CGAN。)
但是,CVAE不是一个特定的模型,而是一类模型,总之就是把标签信息融入到VAE中的方式有很多,目的也不一样。这里基于前面的讨论,给出一种非常简单的VAE。
在前面的讨论中,我们希望
下图显示这个简单的CVAE是有一定的效果的,不过因为encoder和decoder都比较简单(纯MLP),所以控制生成的效果不尽完美。更完备的CVAE请读者自行学习了,最近还出来了CVAE与GAN结合的工作CVAE-GAN,模型套路千变万化啊。
代码 #
我把Keras官方的VAE代码复制了一份,然后微调并根据前文内容添加了中文注释,也把最后说到的简单的CVAE实现了一下,供读者参考~
代码:https://github.com/bojone/vae
终点站 #
磕磕碰碰,又到了文章的终点了。不知道讲清楚了没,希望大家多提点意见~
总的来说,VAE的思路还是很漂亮的。倒不是说它提供了一个多么好的生成模型(因为事实上它生成的图像并不算好,偏模糊),而是它提供了一个将概率图跟深度学习结合起来的一个非常棒的案例,这个案例有诸多值得思考回味的地方。
转载到请包括本文地址:https://spaces.ac.cn/archives/5253
更详细的转载事宜请参考:《科学空间FAQ》
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!