动手学强化学习(七.1):DQN 算法代码
一、代码如下:
import random import gym import numpy as np import collections from tqdm import tqdm import torch import torch.nn.functional as F import matplotlib.pyplot as plt import rl_utils class ReplayBuffer: ''' 经验回放池 ''' def __init__(self, capacity): self.buffer = collections.deque(maxlen=capacity) # 队列,先进先出 def add(self, state, action, reward, next_state, done): # 将数据加入buffer self.buffer.append((state, action, reward, next_state, done)) def sample(self, batch_size): # 从buffer中采样数据,数量为batch_size transitions = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = zip(*transitions) return np.array(state), action, reward, np.array(next_state), done def size(self): # 目前buffer中数据的数量 return len(self.buffer) class Qnet(torch.nn.Module): ''' 只有一层隐藏层的Q网络 ''' def __init__(self, state_dim, hidden_dim, action_dim): super(Qnet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) # 隐藏层使用ReLU激活函数 return self.fc2(x) class DQN: ''' DQN算法 ''' def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma, epsilon, target_update, device): self.action_dim = action_dim #2 self.q_net = Qnet(state_dim, hidden_dim, self.action_dim).to(device) # Q网络 # 目标网络 self.target_q_net = Qnet(state_dim, hidden_dim, self.action_dim).to(device) # 使用Adam优化器 self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=learning_rate) self.gamma = gamma # 折扣因子=0.98 self.epsilon = epsilon # epsilon-贪婪策略=0.01 self.target_update = target_update # 目标网络更新频率=10 self.count = 0 # 计数器,记录更新次数 self.device = device def take_action(self, state): # epsilon-贪婪策略采取动作 if np.random.random() < self.epsilon: action = np.random.randint(self.action_dim) else: state = torch.tensor([state], dtype=torch.float).to(self.device) action = self.q_net(state).argmax().item() return action def update(self, transition_dict): states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device) actions = torch.tensor(transition_dict['actions']).view(-1, 1).to( self.device) rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device) next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device) dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1, 1).to(self.device) q_values = self.q_net(states).gather(1, actions) # Q值 # 下个状态的最大Q值 max_next_q_values = self.target_q_net(next_states).max(1)[0].view( -1, 1) q_targets = rewards + self.gamma * max_next_q_values * (1 - dones ) # TD误差目标 dqn_loss = torch.mean(F.mse_loss(q_values, q_targets)) # 均方误差损失函数 self.optimizer.zero_grad() # PyTorch中默认梯度会累积,这里需要显式将梯度置为0 dqn_loss.backward() # 反向传播更新参数 self.optimizer.step() if self.count % self.target_update == 0: self.target_q_net.load_state_dict( self.q_net.state_dict()) # 更新目标网络 self.count += 1 if __name__ == '__main__': lr = 2e-3 num_episodes = 500 hidden_dim = 128 gamma = 0.98 epsilon = 0.01 target_update = 10 buffer_size = 10000 minimal_size = 500 batch_size = 64 device = torch.device("cuda") if torch.cuda.is_available() else torch.device( "cpu") env_name = 'CartPole-v0' env = gym.make(env_name) random.seed(0) np.random.seed(0) torch.manual_seed(0) replay_buffer = ReplayBuffer(buffer_size) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon, target_update, device) return_list = [] for i in range(10): with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): episode_return = 0 state = env.reset()[0] done = False while not done: action = agent.take_action(state) next_state, reward, done, _, _ = env.step(action) replay_buffer.add(state, action, reward, next_state, done) state = next_state episode_return += reward # 当buffer数据的数量超过一定值后,才进行Q网络训练 if replay_buffer.size() > minimal_size: b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size) transition_dict = { 'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r, 'dones': b_d } agent.update(transition_dict) return_list.append(episode_return) if (i_episode + 1) % 10 == 0: pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:]) }) pbar.update(1)