动手学强化学习(二):BAM代码

一、greedy

import numpy as np
import matplotlib.pyplot as plt
class BernoulliBandit:
    """ 伯努利多臂老胡机,输入K表示拉杆个数 """
    def __init__(self, K):
        self.probs = np.random.uniform(size=K)  # 随机生成K个0~1的数,作为拉动每根拉杆的获奖
        # 概率
        self.best_idx = np.argmax(self.probs)  # 获奖概率最大的拉杆
        self.best_prob = self.probs[self.best_idx]  # 最大的获奖概率
        self.K = K
    def step(self, k):
        # 当玩家选择了k号拉杆后,根据拉动该老胡机的k号拉杆获得奖励的概率返回1(获奖)或0(未
        # 获奖)
        if np.random.rand() < self.probs[k]:
            return 1
        else:
            return 0

class EpsilonGreedy:
    """ 多臂老胡机算法基本框架 """
    def __init__(self, bandit, epsilon=0.01, init_prob=1.0):
        self.bandit = bandit
        self.counts = np.zeros(self.bandit.K)  # 每根拉杆的尝试次数
        self.regret = 0.  # 当前步的累积懊悔
        self.actions = []  # 维护一个列表,记录每一步的动作
        self.regrets = []  # 维护一个列表,记录每一步的累积懊悔
        self.epsilon = epsilon
        self.estimates = np.array([init_prob] * self.bandit.K)
    def update_regret(self, k):
        # 计算累积懊悔并保存,k为本次动作选择的拉杆的编号
        self.regret += self.bandit.best_prob - self.bandit.probs[k]
        self.regrets.append(self.regret)
    def run_one_step(self):
        # 返回当前动作选择哪一根拉杆,由每个具体的策略实现
        if np.random.random() < self.epsilon:
            k = np.random.randint(0, self.bandit.K)  # 随机选择一根拉杆
        else:
            k = np.argmax(self.estimates)  # 选择期望奖励估值最大的拉杆
        r = self.bandit.step(k)  # 得到本次动作的奖励
        self.estimates[k] += 1. / (self.counts[k] + 1) * (r - self.estimates[k])
        return k

    def run(self, num_steps):
        # 运行一定次数,num_steps为总运行次数
        for _ in range(num_steps):
            k = self.run_one_step()
            self.counts[k] += 1
            self.actions.append(k)
            self.update_regret(k)



if __name__ == '__main__':
    np.random.seed(1)  # 设定随机种子,使实验具有可重复性
    K = 10
    bandit_10_arm = BernoulliBandit(K)
    epsilon_greedy_solver = EpsilonGreedy(bandit_10_arm, epsilon=0.01)
    epsilon_greedy_solver.run(5000)
    print('epsilon-贪婪算法的累积懊悔为:', epsilon_greedy_solver.regret)
    plot_results([epsilon_greedy_solver], ["EpsilonGreedy"])

    np.random.seed(0)
    epsilons = [1e-4, 0.01, 0.1, 0.25, 0.5]
    epsilon_greedy_solver_list = [
        EpsilonGreedy(bandit_10_arm, epsilon=e) for e in epsilons
    ]
    epsilon_greedy_solver_names = ["epsilon={}".format(e) for e in epsilons]
    for solver in epsilon_greedy_solver_list:
        solver.run(5000)
    plot_results(epsilon_greedy_solver_list, epsilon_greedy_solver_names)


    class Solver:
        def __init__(self, bandit):
            self.bandit = bandit
            self.counts = np.zeros(self.bandit.K)  # 每根拉杆的尝试次数
            self.regret = 0.  # 当前步的累积懊悔
            self.actions = []  # 维护一个列表,记录每一步的动作
            self.regrets = []  # 维护一个列表,记录每一步的累积懊悔
        def update_regret(self, k):
            self.regret += self.bandit.best_prob - self.bandit.probs[k]
            self.regrets.append(self.regret)
        def run_one_step(self):
            # 返回当前动作选择哪一根拉杆,由每个具体的策略实现
            raise NotImplementedError
        def run(self, num_steps):
            # 运行一定次数,num_steps为总运行次数
            for _ in range(num_steps):
                k = self.run_one_step()
                self.counts[k] += 1
                self.actions.append(k)
                self.update_regret(k)
    class DecayingEpsilonGreedy(Solver):
        def __init__(self, bandit, init_prob=1.0):
            super(DecayingEpsilonGreedy, self).__init__(bandit)
            self.estimates = np.array([init_prob] * self.bandit.K)
            self.total_count = 0
        def run_one_step(self):
            self.total_count += 1
            if np.random.random() < 1 / self.total_count:  # epsilon值随时间衰减
                k = np.random.randint(0, self.bandit.K)
            else:
                k = np.argmax(self.estimates)
            r = self.bandit.step(k)
            self.estimates[k] += 1. / (self.counts[k] + 1) * (r - self.estimates[k])
            return k
    np.random.seed(1)
    decaying_epsilon_greedy_solver = DecayingEpsilonGreedy(bandit_10_arm)
    decaying_epsilon_greedy_solver.run(5000)
    print('epsilon值衰减的贪婪算法的累积懊悔为:', decaying_epsilon_greedy_solver.regret)
    plot_results([decaying_epsilon_greedy_solver], ["DecayingEpsilonGreedy"])

二、thomson

import numpy as np
import matplotlib.pyplot as plt
class Solver:
    """ 多臂老胡机算法基本框架 """
    def __init__(self, bandit):
        self.bandit = bandit
        self.counts = np.zeros(self.bandit.K)  # 每根拉杆的尝试次数
        self.regret = 0.  # 当前步的累积懊悔
        self.actions = []  # 维护一个列表,记录每一步的动作
        self.regrets = []  # 维护一个列表,记录每一步的累积懊悔

    def update_regret(self, k):
        # 计算累积懊悔并保存,k为本次动作选择的拉杆的编号
        self.regret += self.bandit.best_prob - self.bandit.probs[k]
        self.regrets.append(self.regret)

    def run_one_step(self):
        # 返回当前动作选择哪一根拉杆,由每个具体的策略实现
        raise NotImplementedError

    def run(self, num_steps):
        # 运行一定次数,num_steps为总运行次数
        for _ in range(num_steps):
            k = self.run_one_step()
            self.counts[k] += 1
            self.actions.append(k)
            self.update_regret(k)

class ThompsonSampling(Solver):
    """ 汤普森采样算法,继承Solver类 """
    def __init__(self, bandit):
        super(ThompsonSampling, self).__init__(bandit)
        self._a = np.ones(self.bandit.K)  # 列表,表示每根拉杆奖励为1的次数
        self._b = np.ones(self.bandit.K)  # 列表,表示每根拉杆奖励为0的次数

    def run_one_step(self):
        samples = np.random.beta(self._a, self._b)  # 按照Beta分布采样一组奖励样本
        k = np.argmax(samples)  # 选出采样奖励最大的拉杆
        r = self.bandit.step(k)

        self._a[k] += r  # 更新Beta分布的第一个参数
        self._b[k] += (1 - r)  # 更新Beta分布的第二个参数
        return k

class BernoulliBandit:
    """ 伯努利多臂老胡机,输入K表示拉杆个数 """
    def __init__(self, K):
        self.probs = np.random.uniform(size=K)  # 随机生成K个0~1的数,作为拉动每根拉杆的获奖
        # 概率
        self.best_idx = np.argmax(self.probs)  # 获奖概率最大的拉杆
        self.best_prob = self.probs[self.best_idx]  # 最大的获奖概率
        self.K = K
    def step(self, k):
        # 当玩家选择了k号拉杆后,根据拉动该老胡机的k号拉杆获得奖励的概率返回1(获奖)或0(未
        # 获奖)
        if np.random.rand() < self.probs[k]:
            return 1
        else:
            return 0

def plot_results(solvers, solver_names):
    """生成累积懊悔随时间变化的图像。输入solvers是一个列表,列表中的每个元素是一种特定的策略。
    而solver_names也是一个列表,存储每个策略的名称"""
    for idx, solver in enumerate(solvers):
        time_list = range(len(solver.regrets))
        plt.plot(time_list, solver.regrets, label=solver_names[idx])
    plt.xlabel('Time steps')
    plt.ylabel('Cumulative regrets')
    plt.title('%d-armed bandit' % solvers[0].bandit.K)
    plt.legend()
    plt.show()

if __name__ == '__main__':
    K = 10
    bandit_10_arm = BernoulliBandit(K)
    np.random.seed(1)
    thompson_sampling_solver = ThompsonSampling(bandit_10_arm)
    thompson_sampling_solver.run(5000)
    print('汤普森采样算法的累积懊悔为:', thompson_sampling_solver.regret)
    plot_results([thompson_sampling_solver], ["ThompsonSampling"])

三、ucb

import numpy as np
import matplotlib.pyplot as plt
class Solver:
    def __init__(self, bandit):
        self.bandit = bandit
        self.counts = np.zeros(self.bandit.K)  # 每根拉杆的尝试次数
        self.regret = 0.  # 当前步的累积懊悔
        self.actions = []  # 维护一个列表,记录每一步的动作
        self.regrets = []  # 维护一个列表,记录每一步的累积懊悔
    def update_regret(self, k):
        # 计算累积懊悔并保存,k为本次动作选择的拉杆的编号
        self.regret += self.bandit.best_prob - self.bandit.probs[k]
        self.regrets.append(self.regret)
    def run_one_step(self):
        # 返回当前动作选择哪一根拉杆,由每个具体的策略实现
        raise NotImplementedError
    def run(self, num_steps):
        # 运行一定次数,num_steps为总运行次数
        for _ in range(num_steps):
            k = self.run_one_step()
            self.counts[k] += 1
            self.actions.append(k)
            self.update_regret(k)
class UCB(Solver):
    def __init__(self, bandit, coef, init_prob=1.0):
        super(UCB, self).__init__(bandit)
        self.total_count = 0
        self.estimates = np.array([init_prob] * self.bandit.K)
        self.coef = coef
    def run_one_step(self):
        self.total_count += 1
        ucb = self.estimates + self.coef * np.sqrt(
            np.log(self.total_count) / (2 * (self.counts + 1)))  # 计算上置信界
        k = np.argmax(ucb)  # 选出上置信界最大的拉杆
        r = self.bandit.step(k)
        self.estimates[k] += 1. / (self.counts[k] + 1) * (r - self.estimates[k])
        return k
class BernoulliBandit:
    def __init__(self, K):
        self.probs = np.random.uniform(size=K)  # 随机生成K个0~1的数,作为拉动每根拉杆的获奖
        # 概率
        self.best_idx = np.argmax(self.probs)  # 获奖概率最大的拉杆
        self.best_prob = self.probs[self.best_idx]  # 最大的获奖概率
        self.K = K

    def step(self, k):
        # 当玩家选择了k号拉杆后,根据拉动该老胡机的k号拉杆获得奖励的概率返回1(获奖)或0(未
        # 获奖)
        if np.random.rand() < self.probs[k]:
            return 1
        else:
            return 0
def plot_results(solvers, solver_names):
    for idx, solver in enumerate(solvers):
        time_list = range(len(solver.regrets))
        plt.plot(time_list, solver.regrets, label=solver_names[idx])
    plt.xlabel('Time steps')
    plt.ylabel('Cumulative regrets')
    plt.title('%d-armed bandit' % solvers[0].bandit.K)
    plt.legend()
    plt.show()

if __name__ == '__main__':
    np.random.seed(1)  # 设定随机种子,使实验具有可重复性
    K = 10
    bandit_10_arm = BernoulliBandit(K)
    print("随机生成了一个%d臂伯努利老胡机" % K)
    print("获奖概率最大的拉杆为%d号,其获奖概率为%.4f" %
          (bandit_10_arm.best_idx, bandit_10_arm.best_prob))
    np.random.seed(1)
    coef = 1  # 控制不确定性比重的系数
    UCB_solver = UCB(bandit_10_arm, coef)
    UCB_solver.run(5000)
    print('上置信界算法的累积懊悔为:', UCB_solver.regret)
    plot_results([UCB_solver], ["UCB"])

 

posted @ 2024-03-01 17:46  jasonzhangxianrong  阅读(75)  评论(0编辑  收藏  举报