一、贝叶斯回归_numpy实现
import numpy as np from scipy.stats import chi2, multivariate_normal from utils.data_metrics import mean_squared_error from utils.data_manipulation import train_test_split, polynomial_features class BayesianRegression(object): """贝叶斯回归模型。如果指定了poly_degree,那么特征将被转换为多项式基函数。 将被转换为多项式基函数,从而实现多项式的 回归。 假设权重为正态先验和似然,缩放后的逆卡方先验和似然为正态。 秩平方先验和权重方差的似然。 Parameters: ----------- n_draws: float 从参数的后验中提取的模拟次数。 mu0: array 参数的先验正态分布的均值。 omega0: array 参数的先验正态分布的精度矩阵。 nu0: float 先验标度反卡方分布的自由度。 sigma_sq0: float 先验标度反卡方分布的尺度参数。 poly_degree: int 特征应被转换为的多项式程度。允许 进行多项式回归。 cred_int: float 可信区间(ETI在本例中)。95 => 参数后验的95%可信区间。 """ def __init__(self, n_draws, mu0, omega0, nu0, sigma_sq0, poly_degree=0, cred_int=95): self.w = None self.n_draws = n_draws self.poly_degree = poly_degree self.cred_int = cred_int # Prior parameters self.mu0 = mu0 self.omega0 = omega0 self.nu0 = nu0 self.sigma_sq0 = sigma_sq0 # 允许从缩放的反卡方分布进行模拟。假设方差是按照这个分布的。 # https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution def _draw_scaled_inv_chi_sq(self, n, df, scale): X = chi2.rvs(size=n, df=df) sigma_sq = df * scale / X return sigma_sq def fit(self, X, y): # If polynomial transformation if self.poly_degree: X = polynomial_features(X, degree=self.poly_degree) n_samples, n_features = np.shape(X) X_X = X.T.dot(X) # β的最小二乘法近似值 beta_hat = np.linalg.pinv(X_X).dot(X.T).dot(y) # 后验参数可以通过分析来确定,因为我们假定似然的共轭先验。 # 正态先验/似然 => 正态后验 mu_n = np.linalg.pinv(X_X + self.omega0).dot(X_X.dot(beta_hat)+self.omega0.dot(self.mu0)) omega_n = X_X + self.omega0 # 缩放的逆卡方先验/似然 => 缩放的逆卡方后验 nu_n = self.nu0 + n_samples sigma_sq_n = (1.0/nu_n)*(self.nu0*self.sigma_sq0 + \ (y.T.dot(y) + self.mu0.T.dot(self.omega0).dot(self.mu0) - mu_n.T.dot(omega_n.dot(mu_n)))) #模拟n_draws的参数值 beta_draws = np.empty((self.n_draws, n_features)) for i in range(self.n_draws): sigma_sq = self._draw_scaled_inv_chi_sq(n=1, df=nu_n, scale=sigma_sq_n) beta = multivariate_normal.rvs(size=1, mean=mu_n[:,0], cov=sigma_sq*np.linalg.pinv(omega_n)) # 保存参数的绘制 beta_draws[i, :] = beta # 选择模拟变量的平均值作为用于预测的变量。 self.w = np.mean(beta_draws, axis=0) # Lower and upper boundary of the credible interval l_eti = 50 - self.cred_int/2 u_eti = 50 + self.cred_int/2 self.eti = np.array([[np.percentile(beta_draws[:,i], q=l_eti), np.percentile(beta_draws[:,i], q=u_eti)] \ for i in range(n_features)]) def predict(self, X, eti=False): # 如果多项式变换 if self.poly_degree: X = polynomial_features(X, degree=self.poly_degree) y_pred = X.dot(self.w) # 如果应该返回95%等尾区间的下限和上限 if eti: lower_w = self.eti[:, 0] upper_w = self.eti[:, 1] y_lower_pred = X.dot(lower_w) y_upper_pred = X.dot(upper_w) return y_pred, y_lower_pred, y_upper_pred return y_pred