NLP(七):textCNN
一、代码
import torch.optim as optim import torch.utils.data as Data import torch.nn.functional as F from model.word_2_vector import WordEmbedding import os import pandas as pd from pre_process.dataset_iter import DatasetIter class TextCNN(nn.Module): def __init__(self): super(TextCNN, self).__init__() output_channel = 3 self.conv1 = nn.Sequential( # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1] nn.Conv2d(1, output_channel, (10, 128)), nn.ReLU(), nn.MaxPool2d((5, 1)) ) self.conv2 = nn.Sequential( nn.Conv2d(3, 6, (5, 1)), nn.ReLU(), nn.MaxPool2d((4,1)) ) self.conv3 = nn.Sequential( nn.Conv2d(6, 3, (10, 1)), nn.ReLU(), nn.MaxPool2d((4,1)) ) # pool : ((filter_height, filter_width)) self.fc = nn.Sequential( nn.Linear(66, 4), ) def forward(self, X): ''' X: [batch_size, sequence_length] ''' batch_size = X.shape[0] embedding_X = X # [batch_size, sequence_length, embedding_size] embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size] conved = self.conv1(embedding_X) # [batch_size, output_channel*1*1] conve2 = self.conv2(conved) conve3 = self.conv3(conve2) flatten = conve3.view(batch_size, -1) output = self.fc(flatten) return output def binary_acc(preds, y): pred = torch.argmax(preds, dim=1) correct = torch.eq(pred, y).float() acc = correct.sum() / len(correct) return acc def run_text_cnn(): parent_path = os.path.split(os.path.realpath(__file__))[0] root = parent_path[:parent_path.find("model")] BATCH_SIZE = 16 _path = os.path.join(root, "datas", "annotate", "labeled.csv") data_frame = pd.read_csv(_path, sep="\t") label = data_frame["labels"] sentences = data_frame["datas"] word = WordEmbedding() dataset = DatasetIter(sentences, label) loader = Data.DataLoader(dataset, BATCH_SIZE, True) model = TextCNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=1e-3) for epoch in range(1000): avg_acc = [] avg_loss = [] model.train() for batch_x, batch_y in loader: x = word.sentenceTupleToEmbedding(batch_x) pred = model(x) loss = criterion(pred, batch_y) acc = binary_acc(pred, batch_y) avg_acc.append(acc) optimizer.zero_grad() loss.backward() optimizer.step() avg_loss.append(loss.item()) avg_acc = np.array(avg_acc).mean() avg_loss = np.array(avg_loss).mean() print('train acc:', avg_acc) print("train loss", avg_loss)
二、图形
分类:
NLP
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧