pytorch(二十二):正则化

一、实例

 

 

 

 

二、代码

  1 import  torch
  2 import  torch.nn as nn
  3 import  torch.nn.functional as F
  4 import  torch.optim as optim
  5 from    torchvision import datasets, transforms
  6 
  7 from visdom import Visdom
  8 
  9 batch_size=200
 10 learning_rate=0.01
 11 epochs=10
 12 
 13 train_loader = torch.utils.data.DataLoader(
 14     datasets.MNIST('datasets/mnist_data', train=True, download=True,
 15                    transform=transforms.Compose([
 16                        transforms.ToTensor(),
 17                        # transforms.Normalize((0.1307,), (0.3081,))
 18                    ])),
 19     batch_size=batch_size, shuffle=True)
 20 test_loader = torch.utils.data.DataLoader(
 21     datasets.MNIST('datasets/mnist_data/', train=False, transform=transforms.Compose([
 22         transforms.ToTensor(),
 23         # transforms.Normalize((0.1307,), (0.3081,))
 24     ])),
 25     batch_size=batch_size, shuffle=True)
 26 
 27 
 28 
 29 class MLP(nn.Module):
 30 
 31     def __init__(self):
 32         super(MLP, self).__init__()
 33 
 34         self.model = nn.Sequential(
 35             nn.Linear(784, 200),
 36             nn.LeakyReLU(inplace=True),
 37             nn.Linear(200, 200),
 38             nn.LeakyReLU(inplace=True),
 39             nn.Linear(200, 10),
 40             nn.LeakyReLU(inplace=True),
 41         )
 42 
 43     def forward(self, x):
 44         x = self.model(x)
 45 
 46         return x
 47 
 48 device = torch.device('cuda:0')
 49 net = MLP().to(device)
 50 optimizer = optim.SGD(net.parameters(), lr=learning_rate, weight_decay=0.01)
 51 criteon = nn.CrossEntropyLoss().to(device)
 52 
 53 viz = Visdom()
 54 
 55 viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
 56 viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
 57                                                    legend=['loss', 'acc.']))
 58 global_step = 0
 59 
 60 for epoch in range(epochs):
 61 
 62     for batch_idx, (data, target) in enumerate(train_loader):
 63         data = data.view(-1, 28*28)
 64         data, target = data.to(device), target.cuda()
 65 
 66         logits = net(data)
 67         loss = criteon(logits, target)
 68 
 69         optimizer.zero_grad()
 70         loss.backward()
 71         # print(w1.grad.norm(), w2.grad.norm())
 72         optimizer.step()
 73 
 74         global_step += 1
 75         viz.line([loss.item()], [global_step], win='train_loss', update='append')
 76 
 77         if batch_idx % 100 == 0:
 78             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 79                 epoch, batch_idx * len(data), len(train_loader.dataset),
 80                        100. * batch_idx / len(train_loader), loss.item()))
 81 
 82 
 83     test_loss = 0
 84     correct = 0
 85     for data, target in test_loader:
 86         data = data.view(-1, 28 * 28)
 87         data, target = data.to(device), target.cuda()
 88         logits = net(data)
 89         test_loss += criteon(logits, target).item()
 90 
 91         pred = logits.argmax(dim=1)
 92         correct += pred.eq(target).float().sum().item()
 93 
 94     viz.line([[test_loss, correct / len(test_loader.dataset)]],
 95              [global_step], win='test', update='append')
 96     viz.images(data.view(-1, 1, 28, 28), win='x')
 97     viz.text(str(pred.detach().cpu().numpy()), win='pred',
 98              opts=dict(title='pred'))
 99 
100     test_loss /= len(test_loader.dataset)
101     print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
102         test_loss, correct, len(test_loader.dataset),
103         100. * correct / len(test_loader.dataset)))

 

posted @ 2020-11-30 13:08  jasonzhangxianrong  阅读(473)  评论(0编辑  收藏  举报