pytorch(二十二):正则化
一、实例
二、代码
1 import torch 2 import torch.nn as nn 3 import torch.nn.functional as F 4 import torch.optim as optim 5 from torchvision import datasets, transforms 6 7 from visdom import Visdom 8 9 batch_size=200 10 learning_rate=0.01 11 epochs=10 12 13 train_loader = torch.utils.data.DataLoader( 14 datasets.MNIST('datasets/mnist_data', train=True, download=True, 15 transform=transforms.Compose([ 16 transforms.ToTensor(), 17 # transforms.Normalize((0.1307,), (0.3081,)) 18 ])), 19 batch_size=batch_size, shuffle=True) 20 test_loader = torch.utils.data.DataLoader( 21 datasets.MNIST('datasets/mnist_data/', train=False, transform=transforms.Compose([ 22 transforms.ToTensor(), 23 # transforms.Normalize((0.1307,), (0.3081,)) 24 ])), 25 batch_size=batch_size, shuffle=True) 26 27 28 29 class MLP(nn.Module): 30 31 def __init__(self): 32 super(MLP, self).__init__() 33 34 self.model = nn.Sequential( 35 nn.Linear(784, 200), 36 nn.LeakyReLU(inplace=True), 37 nn.Linear(200, 200), 38 nn.LeakyReLU(inplace=True), 39 nn.Linear(200, 10), 40 nn.LeakyReLU(inplace=True), 41 ) 42 43 def forward(self, x): 44 x = self.model(x) 45 46 return x 47 48 device = torch.device('cuda:0') 49 net = MLP().to(device) 50 optimizer = optim.SGD(net.parameters(), lr=learning_rate, weight_decay=0.01) 51 criteon = nn.CrossEntropyLoss().to(device) 52 53 viz = Visdom() 54 55 viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss')) 56 viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.', 57 legend=['loss', 'acc.'])) 58 global_step = 0 59 60 for epoch in range(epochs): 61 62 for batch_idx, (data, target) in enumerate(train_loader): 63 data = data.view(-1, 28*28) 64 data, target = data.to(device), target.cuda() 65 66 logits = net(data) 67 loss = criteon(logits, target) 68 69 optimizer.zero_grad() 70 loss.backward() 71 # print(w1.grad.norm(), w2.grad.norm()) 72 optimizer.step() 73 74 global_step += 1 75 viz.line([loss.item()], [global_step], win='train_loss', update='append') 76 77 if batch_idx % 100 == 0: 78 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( 79 epoch, batch_idx * len(data), len(train_loader.dataset), 80 100. * batch_idx / len(train_loader), loss.item())) 81 82 83 test_loss = 0 84 correct = 0 85 for data, target in test_loader: 86 data = data.view(-1, 28 * 28) 87 data, target = data.to(device), target.cuda() 88 logits = net(data) 89 test_loss += criteon(logits, target).item() 90 91 pred = logits.argmax(dim=1) 92 correct += pred.eq(target).float().sum().item() 93 94 viz.line([[test_loss, correct / len(test_loader.dataset)]], 95 [global_step], win='test', update='append') 96 viz.images(data.view(-1, 1, 28, 28), win='x') 97 viz.text(str(pred.detach().cpu().numpy()), win='pred', 98 opts=dict(title='pred')) 99 100 test_loss /= len(test_loader.dataset) 101 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( 102 test_loss, correct, len(test_loader.dataset), 103 100. * correct / len(test_loader.dataset)))