[PyTorch 学习笔记] 4.3 优化器
本章代码:
这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念、optimizer 的属性、optimizer 的方法。
优化器的概念
PyTorch 中的优化器是用于管理并更新模型中可学习参数的值,使得模型输出更加接近真实标签。
optimizer 的属性
PyTorch 中提供了 Optimizer 类,定义如下:
class Optimizer(object):
def __init__(self, params, defaults):
self.defaults = defaults
self.state = defaultdict(dict)
self.param_groups = []
主要有 3 个属性
- defaults:优化器的超参数,如 weight_decay,momentum
- state:参数的缓存,如 momentum 中需要用到前几次的梯度,就缓存在这个变量中
- param_groups:管理的参数组,是一个 list,其中每个元素是字典,包括 momentum、lr、weight_decay、params 等。
- _step_count:记录更新 次数,在学习率调整中使用
optimizer 的方法
-
zero_grad():清空所管理参数的梯度。由于 PyTorch 的特性是张量的梯度不自动清零,因此每次反向传播之后都需要清空梯度。代码如下:
def zero_grad(self): r"""Clears the gradients of all optimized :class:`torch.Tensor` s.""" for group in self.param_groups: for p in group['params']: if p.grad is not None: p.grad.detach_() p.grad.zero_()
-
step():执行一步梯度更新
-
add_param_group():添加参数组,主要代码如下:
def add_param_group(self, param_group): params = param_group['params'] if isinstance(params, torch.Tensor): param_group['params'] = [params] ... self.param_groups.append(param_group)
-
state_dict():获取优化器当前状态信息字典
-
load_state_dict():加载状态信息字典,包括 state 、momentum_buffer 和 param_groups。主要用于模型的断点续训练。我们可以在每隔 50 个 epoch 就保存模型的 state_dict 到硬盘,在意外终止训练时,可以继续加载上次保存的状态,继续训练。代码如下:
def state_dict(self): r"""Returns the state of the optimizer as a :class:`dict`. ... return { 'state': packed_state, 'param_groups': param_groups, }
下面是代码示例:
step()
张量 weight 的形状为 $2 \times 2$,并设置梯度为 1,把 weight 传进优化器,学习率设置为 1,执行optimizer.step()
更新梯度,也就是所有的张量都减去 1。
weight = torch.randn((2, 2), requires_grad=True)
weight.grad = torch.ones((2, 2))
optimizer = optim.SGD([weight], lr=1)
print("weight before step:{}".format(weight.data))
optimizer.step() # 修改lr=1, 0.1观察结果
print("weight after step:{}".format(weight.data))
输出为:
weight before step:tensor([[0.6614, 0.2669],
[0.0617, 0.6213]])
weight after step:tensor([[-0.3386, -0.7331],
[-0.9383, -0.3787]])
zero_grad()
代码如下:
print("weight before step:{}".format(weight.data))
optimizer.step() # 修改lr=1 0.1观察结果
print("weight after step:{}".format(weight.data))
print("weight in optimizer:{}\nweight in weight:{}\n".format(id(optimizer.param_groups[0]['params'][0]), id(weight)))
print("weight.grad is {}\n".format(weight.grad))
optimizer.zero_grad()
print("after optimizer.zero_grad(), weight.grad is\n{}".format(weight.grad))
输出为:
weight before step:tensor([[0.6614, 0.2669],
[0.0617, 0.6213]])
weight after step:tensor([[-0.3386, -0.7331],
[-0.9383, -0.3787]])
weight in optimizer:1932450477472
weight in weight:1932450477472
weight.grad is tensor([[1., 1.],
[1., 1.]])
after optimizer.zero_grad(), weight.grad is
tensor([[0., 0.],
[0., 0.]])
可以看到优化器的 param_groups 中存储的参数和 weight 的内存地址是一样的,所以优化器中保存的是参数的地址,而不是把参数复制到优化器中。
add_param_group()
向优化器中添加一组参数,代码如下:
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
w2 = torch.randn((3, 3), requires_grad=True)
optimizer.add_param_group({"params": w2, 'lr': 0.0001})
print("optimizer.param_groups is\n{}".format(optimizer.param_groups))
输出如下:
optimizer.param_groups is
[{'params': [tensor([[0.6614, 0.2669],
[0.0617, 0.6213]], requires_grad=True)], 'lr': 1, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]
optimizer.param_groups is
[{'params': [tensor([[0.6614, 0.2669],
[0.0617, 0.6213]], requires_grad=True)], 'lr': 1, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}, {'params': [tensor([[-0.4519, -0.1661, -1.5228],
[ 0.3817, -1.0276, -0.5631],
[-0.8923, -0.0583, -0.1955]], requires_grad=True)], 'lr': 0.0001, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]
state_dict()
首先进行 10 次反向传播更新,然后对比 state_dict 的变化。可以使用torch.save()
把 state_dict 保存到 pkl 文件中。
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
opt_state_dict = optimizer.state_dict()
print("state_dict before step:\n", opt_state_dict)
for i in range(10):
optimizer.step()
print("state_dict after step:\n", optimizer.state_dict())
torch.save(optimizer.state_dict(), os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))
输出为:
state_dict before step:
{'state': {}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [1976501036448]}]}
state_dict after step:
{'state': {1976501036448: {'momentum_buffer': tensor([[6.5132, 6.5132],
[6.5132, 6.5132]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [1976501036448]}]}
经过反向传播后,state_dict 中的字典保存了1976501036448
作为 key,这个 key 就是参数的内存地址。
load_state_dict()
上面保存了 state_dict 之后,可以先使用torch.load()
把加载到内存中,然后再使用load_state_dict()
加载到模型中,继续训练。代码如下:
optimizer = optim.SGD([weight], lr=0.1, momentum=0.9)
state_dict = torch.load(os.path.join(BASE_DIR, "optimizer_state_dict.pkl"))
print("state_dict before load state:\n", optimizer.state_dict())
optimizer.load_state_dict(state_dict)
print("state_dict after load state:\n", optimizer.state_dict())
输出如下:
state_dict before load state:
{'state': {}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [2075286132128]}]}
state_dict after load state:
{'state': {2075286132128: {'momentum_buffer': tensor([[6.5132, 6.5132],
[6.5132, 6.5132]])}}, 'param_groups': [{'lr': 0.1, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [2075286132128]}]}
学习率
学习率是影响损失函数收敛的重要因素,控制了梯度下降更新的步伐。下面构造一个损失函数 $y=(2x)^{2}$,$x$ 的初始值为 2,学习率设置为 1。
iter_rec, loss_rec, x_rec = list(), list(), list()
lr = 0.01 # /1. /.5 /.2 /.1 /.125
max_iteration = 20 # /1. 4 /.5 4 /.2 20 200
for i in range(max_iteration):
y = func(x)
y.backward()
print("Iter:{}, X:{:8}, X.grad:{:8}, loss:{:10}".format(
i, x.detach().numpy()[0], x.grad.detach().numpy()[0], y.item()))
x_rec.append(x.item())
x.data.sub_(lr * x.grad) # x -= x.grad 数学表达式意义: x = x - x.grad # 0.5 0.2 0.1 0.125
x.grad.zero_()
iter_rec.append(i)
loss_rec.append(y)
plt.subplot(121).plot(iter_rec, loss_rec, '-ro')
plt.xlabel("Iteration")
plt.ylabel("Loss value")
x_t = torch.linspace(-3, 3, 100)
y = func(x_t)
plt.subplot(122).plot(x_t.numpy(), y.numpy(), label="y = 4*x^2")
plt.grid()
y_rec = [func(torch.tensor(i)).item() for i in x_rec]
plt.subplot(122).plot(x_rec, y_rec, '-ro')
plt.legend()
plt.show()
结果如下:
损失函数没有减少,而是增大,这时因为学习率太大,无法收敛,把学习率设置为 0.01 后,结果如下;
从上面可以看出,适当的学习率可以加快模型的收敛。
下面的代码是试验 10 个不同的学习率 ,[0.01, 0.5] 之间线性选择 10 个学习率,并比较损失函数的收敛情况
iteration = 100
num_lr = 10
lr_min, lr_max = 0.01, 0.2 # .5 .3 .2
lr_list = np.linspace(lr_min, lr_max, num=num_lr).tolist()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()
for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)
for iter in range(iteration):
y = func(x)
y.backward()
x.data.sub_(lr * x.grad) # x.data -= x.grad
x.grad.zero_()
loss_rec[i].append(y.item())
for i, loss_r in enumerate(loss_rec):
plt.plot(range(len(loss_r)), loss_r, label="LR: {}".format(lr_list[i]))
plt.legend()
plt.xlabel('Iterations')
plt.ylabel('Loss value')
plt.show()
结果如下:
上面的结果表示在学习率较大时,损失函数越来越大,模型不能收敛。把学习率区间改为 [0.01, 0.2] 之后,结果如下:
这个损失函数在学习率为 0.125 时最快收敛,学习率为 0.01 收敛最慢。但是不同模型的最佳学习率不一样,无法事先知道,一般把学习率设置为比较小的数就可以了。
momentum 动量
momentum 动量的更新方法,不仅考虑当前的梯度,还会结合前面的梯度。
momentum 来源于指数加权平均:$\mathrm{v}{t}=\boldsymbol{\beta} * \boldsymbol{v}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}{t}$,其中 $v$ 是上一个时刻的指数加权平均,$\theta_{t}$ 表示当前时刻的值,$\beta$ 是系数,一般小于 1。指数加权平均常用于时间序列求平均值。假设现在求得是 100 个时刻的指数加权平均,那么
$\mathrm{v}{100}=\boldsymbol{\beta} * \boldsymbol{v}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}{100}$
$=(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}+\boldsymbol{\beta} *\left(\boldsymbol{\beta} * \boldsymbol{v}{98}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}\right)$
$=(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\theta}{100}+(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\beta} * \boldsymbol{\theta}+\left(\boldsymbol{\beta}^{2} * \boldsymbol{v}_{98} \right)$
$=\sum_{i}^{N}(\mathbf{1}-\boldsymbol{\beta}) * \boldsymbol{\beta}^{i} * \boldsymbol{\theta}_{N-i}$
从上式可以看到,由于 $\beta$ 小于 1,越前面时刻的 $\theta$,$\beta$ 的次方就越大,系数就越小。
$\beta$ 可以理解为记忆周期,$\beta$ 越小,记忆周期越短,$\beta$ 越大,记忆周期越长。通常 $\beta$ 设置为 0.9,那么 $\frac{1}{1-\beta}=\frac{1}{1-0.9}=10$,表示更关注最近 10 天的数据。
下面代码展示了 $\beta=0.9$ 的情况
weights = exp_w_func(beta, time_list)
plt.plot(time_list, weights, '-ro', label="Beta: {}\ny = B^t * (1-B)".format(beta))
plt.xlabel("time")
plt.ylabel("weight")
plt.legend()
plt.title("exponentially weighted average")
plt.show()
print(np.sum(weights))
结果为:
下面代码展示了不同的 $\beta$ 取值情况
beta_list = [0.98, 0.95, 0.9, 0.8]
w_list = [exp_w_func(beta, time_list) for beta in beta_list]
for i, w in enumerate(w_list):
plt.plot(time_list, w, label="Beta: {}".format(beta_list[i]))
plt.xlabel("time")
plt.ylabel("weight")
plt.legend()
plt.show()
结果为:
$\beta$ 的值越大,记忆周期越长,就会更多考虑前面时刻的数值,因此越平缓。
在 PyTroch 中,momentum 的更新公式是:
$v_{i}=m * v_{i-1}+g\left(w_{i}\right)$
$w_{i+1}=w_{i}-l r * v_{i}$
其中 $w_{i+1}$ 表示第 $i+1$ 次更新的参数,lr 表示学习率,$v_{i}$ 表示更新量,$m$ 表示 momentum 系数,$g(w_{i})$ 表示 $w_{i}$ 的梯度。展开表示如下:
$\begin{aligned} \boldsymbol{v}{100} &=\boldsymbol{m} * \boldsymbol{v}+\boldsymbol{g}\left(\boldsymbol{w}{100}\right) \ &=\boldsymbol{g}\left(\boldsymbol{w}\right)+\boldsymbol{m} *\left(\boldsymbol{m} * \boldsymbol{v}{98}+\boldsymbol{g}\left(\boldsymbol{w}\right)\right) \ &=\boldsymbol{g}\left(\boldsymbol{w}{100}\right)+\boldsymbol{m} * \boldsymbol{g}\left(\boldsymbol{w}\right)+\boldsymbol{m}^{2} * \boldsymbol{v}{98} \ &=\boldsymbol{g}\left(\boldsymbol{w}\right)+\boldsymbol{m} * \boldsymbol{g}\left(\boldsymbol{w}{99}\right)+\boldsymbol{m}^{2} * \boldsymbol{g}\left(\boldsymbol{w}\right)+\boldsymbol{m}^{3} * \boldsymbol{v}_{97} \end{aligned}$
下面的代码是构造一个损失函数 $y=(2x)^{2}$,$x$ 的初始值为 2,记录每一次梯度下降并画图,学习率使用 0.01 和 0.03,不适用 momentum。
def func(x):
return torch.pow(2*x, 2) # y = (2x)^2 = 4*x^2 dy/dx = 8x
iteration = 100
m = 0 # .9 .63
lr_list = [0.01, 0.03]
momentum_list = list()
loss_rec = [[] for l in range(len(lr_list))]
iter_rec = list()
for i, lr in enumerate(lr_list):
x = torch.tensor([2.], requires_grad=True)
momentum = 0. if lr == 0.03 else m
momentum_list.append(momentum)
optimizer = optim.SGD([x], lr=lr, momentum=momentum)
for iter in range(iteration):
y = func(x)
y.backward()
optimizer.step()
optimizer.zero_grad()
loss_rec[i].append(y.item())
for i, loss_r in enumerate(loss_rec):
plt.plot(range(len(loss_r)), loss_r, label="LR: {} M:{}".format(lr_list[i], momentum_list[i]))
plt.legend()
plt.xlabel('Iterations')
plt.ylabel('Loss value')
plt.show()
结果为:
可以看到学习率为 0.3 时收敛更快。然后我们把学习率为 0.1 时,设置 momentum 为 0.9,结果如下:
虽然设置了 momentum,但是震荡收敛,这是由于 momentum 的值太大,每一次都考虑上一次的比例太多,可以把 momentum 设置为 0.63 后,结果如下:
可以看到设置适当的 momentum 后,学习率 0.1 的情况下收敛更快了。
下面介绍 PyTroch 所提供的 10 种优化器。
PyTroch 提供的 10 种优化器
optim.SGD
optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False
随机梯度下降法
主要参数:
- params:管理的参数组
- lr:初始学习率
- momentum:动量系数 $\beta$
- weight_decay:L2 正则化系数
- nesterov:是否采用 NAG
optim.Adagrad
自适应学习率梯度下降法
optim.RMSprop
Adagrad 的改进
optim.Adadelta
optim.Adam
RMSProp 集合 Momentum,这个是目前最常用的优化器,因为它可以使用较大的初始学习率。
optim.Adamax
Adam 增加学习率上限
optim.SparseAdam
稀疏版的 Adam
optim.ASGD
随机平均梯度下降
optim.Rprop
弹性反向传播,这种优化器通常是在所有样本都一起训练,也就是 batchsize 为全部样本时使用。
optim.LBFGS
BFGS 在内存上的改进
参考资料
如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。