04 2016 档案
摘要:1.证明拉格朗日中值定理: 设$f(x)\in C[a,b]$且在$(a,b)$内可导,那么存在$\xi \in (a,b)$, s.t. $$f'(\xi)=\frac{f(b)-f(a)}{b-a}$$ Proof. 设$\lambda=\frac{f(b)-f(a)}{b-a}$.要证即存在$
阅读全文
摘要:求极限 1. $$\lim_{n\to\infty}\frac{1!+2!+\cdots+n!}{n!}$$ 提示:使用夹逼准则 $1!+2!+\cdot+(n-2)!<(n-2)(n-2)!$. 也可以直接使用Stolz定理 2.$$\lim_{n\to\infty}(1+x)(1+x^{2})\
阅读全文
摘要:求$f(x)=\frac{x^{1+x}}{(1+x)^{x}}(x>0)$的斜渐近线 (i).斜渐近线系数 $$a=\lim_{x\to\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\left(1-\frac{1}{x+1}\right)^{x}=e^{-1}$$
阅读全文
摘要:求下列极限 (1).$$\lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^{n}\sin \frac{k\pi}{n}$$ (2).$$\lim_{n\to \infty}\left( \frac{1}{n+1}+\frac{2}{n+2}+\cdots+\frac{1
阅读全文
摘要:节选自 汪林《实分析中的反例》 在$[0,1]$上定义函数 $$g(x)=x^{2}\sin \frac{1}{x}, x\neq 0$$ 补充定义$g(0)=0$, 则函数$g(x)$为连续函数,图形如下。 导函数可求得 $$g'(x)=2x\sin \frac{1}{x}-\cos \frac{
阅读全文