2018年武汉大学653数学分析
一(30分).1.计算极限$$\lim_{n\rightarrow\infty}\sum_{k=n^2}^{(n+1)^2}\frac1{\sqrt k}.$$
2.计算极限$$\lim_{n\rightarrow\infty}\frac{\int_0^\mathrm\pi\sin^nx\cos^6x\operatorname dx}{\int_0^\mathrm\pi\sin^nx\operatorname dx}$$
3.已知$x_{n+1}=\ln\left(1+x_n\right)$,且$x_1>0$,计算$$\lim_{n\rightarrow\infty}nx_n$$
二.设$f(x),f_1(x)$在$[a,b]$区间上连续,$f_{n+1}(x)=f(x)+\int_a^x\sin\{f_n(t)\}\operatorname dt$,证明:$\{f_n\}$在$[a,b]$一致收敛.
三.设$$f(x)=\left\{\begin{array}{lc}e^{-\frac1{x^2}}&,\;x\neq0\\0&,\;x=0\end{array}\right.$$证明$f(x)$在$x=0$处任意阶导数存在.
四.已知$(x_1,x_2,x_3)\in{R}^3$,其中$u=\frac1{\left|x\right|},\left|x\right|=\sqrt{x_1^2+x_2^2+x_3^2}$,计算
$$\oint\limits_S\frac{\partial^2 u}{\partial x_i\partial x_j}{\rm d}S,i,j=1,2,3$$,其中$S:x_1^2+x_2^2+x_3^2=R^2$
五.讨论求解方程$f(x)$牛顿切线法.1.推导牛顿切线法迭代公式;
2.在适当的条件下,证明牛顿切线法收敛
六(20分).求极限$$\lim_{n\rightarrow\infty}(nA-\sum_{k=1}^nf(\frac kn))=B$$存在时,$A,B$的值。
七.设$u_i=u_i(x_1,x_2),i=1,2$,且关于每个变量为周期1的连续可微函数,求$$\iint\limits_{0\leq x_1,x_2\leq1}det(\delta_{ij}+\frac{\partial u_i}{\partial x_j})dx_1dx_2,$$其中$det(\delta_{ij}+\frac{\partial u_i}{\partial x_j})$是映射$x\mapsto(x_1+u_1,x_2+u_2)$的雅克比行列式.
八(40分).设$f(x)$在$[a,b]$上$Riemann$可积,$\varphi(x)$是周期为$T$的连续函数,证明:
1.存在阶梯函数$g_\varepsilon(x)$使得$$\int_a^b\left|f(x)-g_\varepsilon(x)\right|\operatorname dx<\frac\varepsilon2$$
2.计算$$\lim_{n\rightarrow\infty}\int_a^b\varphi(nx)\operatorname dx$$
3.证明$$\lim_{n\rightarrow\infty}\int_a^bf(x)\varphi(nx)\operatorname dx=\frac1T\int_0^T\varphi(x)\operatorname dx\int_a^bf(x)\operatorname dx$$
4.计算$$\lim_{n\rightarrow\infty}\frac1{\ln n}\int_0^T\frac{\varphi(nx)}xdx,其中函数\frac{\varphi(nx)}x收敛$$
来源:http://www.math.org.cn/forum.php?mod=viewthread&tid=38111&page=1#pid174414