Luis A. Caffarelli教授的出版作品【1】


[94] Caffarelli, Luis A. The differentiability of the free boundary for the nn -dimensional porous media equation. Directions in partial differential equations (Madison, WI, 1985), 37--42, Publ. Math. Res. Center Univ. Wisconsin 54 Academic Press, Boston, MA, 1987. 

[93] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,αC1,α . Rev. Mat. Iberoamericana 3 (1987), no. 2, 139--162. 

[92] Aguilera, N. E.; Caffarelli, L. A.; Spruck, J. An optimization problem in heat conduction. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 355--387 (1988). 

[91] Caffarelli, Luis A.; Friedman, Avner Asymptotic behavior of solutions of ut=Δumut=Δum as mm→∞ . Indiana Univ. Math. J. 36 (1987), no. 4, 711--728. 

[90] Caffarelli, L.; Nirenberg, L.; Spruck, J. Correction to: "The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation" [Comm. Pure Appl. Math. 37 (1984), no. 3, 369--402; Comm. Pure Appl. Math. 40 (1987), no. 5, 659--662. 

[89] Caffarelli, Luis A.; Friedman, Avner A singular perturbation problem for semiconductors. Boll. Un. Mat. Ital. B (7) 1 (1987), no. 2, 409--421. 

[88] Caffarelli, L. A.; Vázquez, J. L.; Wolanski, N. I. Lipschitz continuity of solutions and interfaces of the NN -dimensional porous medium equation. Indiana Univ. Math. J. 36 (1987), no. 2, 373--401. 

[87] Caffarelli, L.; Nirenberg, L.; Spruck, J. Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces. Current topics in partial differential equations, 1--26, Kinokuniya, Tokyo, 1986. 

[86] Aguilera, N. E.; Caffarelli, L. A. Regularity results for discrete solutions of second order elliptic problems in the finite element method. Calcolo 23 (1986), no. 4, 327--353 (1987). 

[85] Aronson, D. G.; Caffarelli, L. A. Optimal regularity for one-dimensional porous medium flow. Rev. Mat. Iberoamericana 2 (1986), no. 4, 357--366. 

[84] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for the degenerate Monge-Ampère equation. Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 19--27. 

[83] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. Frontiers of the mathematical sciences: 1985 (New York, 1985). Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S41--S45. 

[82] Caffarelli, Luis A.; Friedman, Avner The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc. 297 (1986), no. 1, 223--241. 

[81] Aguilera, N.; Alt, H. W.; Caffarelli, L. A. An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986), no. 2, 191--198. 

[80] Caffarelli, Luis A.; Friedman, Avner Regularity of the boundary of a capillary drop on an inhomogeneous plane and related variational problems. Rev. Mat. Iberoamericana 1 (1985), no. 1, 61--84. 

[79] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Abrupt and smooth separation of free boundaries in flow problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 1, 137--172. 

[78] Caffarelli, Luis A.; Friedman, Avner Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differential Equations 60 (1985), no. 3, 420--433. 

[77] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), no. 3-4, 261--301. 

[76] Athanasopoulos, Ioannis; Caffarelli, Luis A. A theorem of real analysis and its application to free boundary problems. Comm. Pure Appl. Math. 38 (1985), no. 5, 499--502, 

[75] Caffarelli, Luis A.; Friedman, Avner Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal. 91 (1985), no. 1, 83--98. 

[74] Caffarelli, Luis A.; Friedman, Avner A nonlinear evolution problem associated with an electropaint process. SIAM J. Math. Anal. 16 (1985), no. 5, 955--969. 

[73] Aronson, D. G.; Caffarelli, L. A.; Vázquez, Juan Luis Interfaces with a corner point in one-dimensional porous medium flow. Comm. Pure Appl. Math. 38 (1985), no. 4, 375--404. 

[72] Caffarelli, Luis A.; Friedman, Avner Convexity of solutions of semilinear elliptic equations. Duke Math. J. 52 (1985), no. 2, 431--456. 

[71] Caffarelli, L.; Kohn, J. J.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38 (1985), no. 2, 209--252. 

[70] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Compressible flows of jets and cavities. J. Differential Equations 56 (1985), no. 1, 82--141. 

[69] Caffarelli, Luis A. Variational problems with free boundaries. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1161--1163, PWN, Warsaw, 1984. 

[68] Caffarelli, L.; Kohn, R.; Nirenberg, L. First order interpolation inequalities with weights. Compositio Math. 53 (1984), no. 3, 259--275. 

[67] Caffarelli, Luis; Hardt, Robert; Simon, Leon Minimal surfaces with isolated singularities. Manuscripta Math. 48 (1984), no. 1-3, 1--18 

[66] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner The dam problem with two fluids. Comm. Pure Appl. Math. 37 (1984), no. 5, 601--645. 

[65] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner A free boundary problem for quasilinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 1--44. 

[64] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Jets with two fluids. II. Two free boundaries. Indiana Univ. Math. J. 33 (1984), no. 3, 367--391. 

[63] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984), no. 3, 369--402. 

[62] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Jets with two fluids. I. One free boundary. Indiana Univ. Math. J. 33 (1984), no. 2, 213--247. 

[61] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc. 282 (1984), no. 2, 431--461. 

[60] Aronson, D. G.; Caffarelli, L. A.; Kamin, S. How an initially stationary interface begins to move in porous medium flow. SIAM J. Math. Anal. 14 (1983), no. 4, 639--658. 

[59] Caffarelli, L. A.; Evans, L. C. Continuity of the temperature in the two-phase Stefan problem. Arch. Rational Mech. Anal. 81 (1983), no. 3, 199--220. 

[58] Alt, H. W.; Caffarelli, L. A.; Friedman, A. Axially symmetric jet flows. Arch. Rational Mech. Anal. 81 (1983), no. 2, 97--149. 

[57] Caffarelli, L. A.; Evans, L. C. Continuity of the temperature in two-phase Stefan problems. Free boundary problems: theory and applications, Vol. I,II (Montecatini, 1981), 380--382, Res. Notes in Math. 78 Pitman, Boston, MA, 1983. 

[56] Brezzi, F.; Caffarelli, L. A. Convergence of the discrete free boundaries for finite element approximations. RAIRO Anal. Numér. 17 (1983), no. 4, 385--395. 

[55] Aronson, D. G.; Caffarelli, L. A. The initial trace of a solution of the porous medium equation. Trans. Amer. Math. Soc. 280 (1983), no. 1, 351--366. 

[54] Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), no. 6, 771--831. 

[53] Caffarelli, Luis A.; Littman, Walter Representation formulas for solutions to Δuu=0Δu−u=0 in RnRn . Studies in partial differential equations 249--263, MAA Stud. Math. 23 Math. Assoc. America, Washington, DC, 1982. 

[52] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Jet flows with gravity. J. Reine Angew. Math. 331 (1982), 58--103. 

[51] Caffarelli, Luis A.; Friedman, Avner; Torelli, Alessandro The two-obstacle problem for the biharmonic operator. Pacific J. Math. 103 (1982), no. 2, 325--335. 

[50] Caffarelli, L. A. Regularity theorems for weak solutions of some nonlinear systems. Comm. Pure Appl. Math. 35 (1982), no. 6, 833--838. 

[49] Caffarelli, L.; Gidas, B.; Spruck, J. On multimeron solutions of the Yang-Mills equations. Comm. Math. Phys. 87 (1982/83), no. 4, 485--495. 

[48] Caffarelli, Luis A.; Spruck, Joel Convexity properties of solutions to some classical variational problems. Comm. Partial Differential Equations 7 (1982), no. 11, 1337--1379. 

[47] Caffarelli, Luis A.; Friedman, Avner Axially symmetric infinite cavities. Indiana Univ. Math. J. 31 (1982), no. 1, 135--160. 

[46] Alt, Hans Wilhelm; Caffarelli, Luis A.; Friedman, Avner Asymmetric jet flows. Comm. Pure Appl. Math. 35 (1982), no. 1, 29--68. 

[45] Caffarelli, Luis A.; Friedman, Avner Unloading in the elastic-plastic torsion problem. J. Differential Equations 41 (1981), no. 2, 186--217. 

[44] Caffarelli, Luis A.; Friedman, Avner Sequential testing of several simple hypotheses for a diffusion process and the corresponding free boundary problem. Pacific J. Math. 93 (1981), no. 1, 49--94. 

[43] Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30 (1981), no. 4, 621--640. 

[42] Caffarelli, Luis A.; Fabes, Eugene B.; Kenig, Carlos E. Completely singular elliptic-harmonic measures. Indiana Univ. Math. J. 30 (1981), no. 6, 917--924. 

[41] Alt, H. W.; Caffarelli, L. A. Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981), 105--144. 

[40] Caffarelli, Luis A.; Friedman, Avner; Visintin, Augusto A free boundary problem describing transition in a superconductor. SIAM J. Math. Anal. 12 (1981), no. 5, 679--690. 

[39] Caffarelli, Luis A.; Friedman, Avner; Torelli, Alessandro The free boundary for a fourth order variational inequality. Illinois J. Math. 25 (1981), no. 3, 402--422. 

[38] Caffarelli, Luis A. A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets. Boll. Un. Mat. Ital. A (5) 18 (1981), no. 1, 109--113. 

[37] Caffarelli, Luis A.; Friedman, Avner; Pozzi, Gianni Reflection methods in the elastic-plastic torsion problem. Indiana Univ. Math. J. 29 (1980), no. 2, 205--228. 

[36] Caffarelli, Luis A.; Gilardi, Gianni Monotonicity of the free boundary in the two-dimensional dam problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 3, 523--537. 

[35] Caffarelli, Luis A.; Friedman, Avner Asymptotic estimates for the plasma problem. Duke Math. J. 47 (1980), no. 3, 705--742. 

[34] Caffarelli, L. A.; Kinderlehrer, D. Potential methods in variational inequalities. J. Analyse Math. 37 (1980), 285--295. 

[33] Caffarelli, Luis A.; Friedman, Avner Regularity of the free boundary of a gas flow in an nn -dimensional porous medium. Indiana Univ. Math. J. 29 (1980), no. 3, 361--391. 

[32] Caffarelli, Luis A.; Friedman, Avner A free boundary problem associated with a semilinear parabolic equation. Comm. Partial Differential Equations 5 (1980), no. 9, 969--981. 

[31] Brèzis, Haïm; Caffarelli, Luis A.; Friedman, Avner Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. Pura Appl. (4) 123 (1980), 219--246. 

[30] Caffarelli, Luis A.; Friedman, Avner Reinforcement problems in elastoplasticity. Rocky Mountain J. Math. 10 (1980), no. 1, 155--184. 

[29] Caffarelli, Luis A.; Friedman, Avner The shape of axisymmetric rotating fluid. J. Funct. Anal. 35 (1980), no. 1, 109--142. 

[28] Caffarelli, Luis A. Compactness methods in free boundary problems. Comm. Partial Differential Equations 5 (1980), no. 4, 427--448. 

[27] Caffarelli, Luis A.; Friedman, Avner Regularity of the solution of the quasivariational inequality for the impulse control problem. II. Comm. Partial Differential Equations 4 (1979), no. 3, 279--291. 

[26] Caffarelli, Luis A.; Friedman, Avner Regularity of the free boundary for the one-dimensional flow of gas in a porous medium. Amer. J. Math. 101 (1979), no. 6, 1193--1218. 

[25] Caffarelli, L. A. Further regularity for the Signorini problem. Comm. Partial Differential Equations 4 (1979), no. 9, 1067--1075. 

[24] Caffarelli, Luis A.; Friedman, Avner Continuity of the density of a gas flow in a porous medium. Trans. Amer. Math. Soc. 252 (1979), 99--113. 

[23] Caffarelli, Luis A.; Friedman, Avner The free boundary for elastic-plastic torsion problems. Trans. Amer. Math. Soc. 252 (1979), 65--97. 

[22] Caffarelli, Luis A.; Friedman, Avner Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J. 28 (1979), no. 1, 53--70. 

[21] Caffarelli, Luis A.; Friedman, Avner The free boundary in the Thomas-Fermi atomic model. J. Differential Equations 32 (1979), no. 3, 335--356. 

[20] Caffarelli, Luis A.; Friedman, Avner The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 1, 151--184. 

[19] Caffarelli, L. A.; Rivière, N. M. The Lipschitz character of the stress tensor, when twisting an elastic plastic bar. Arch. Rational Mech. Anal. 69 (1979), no. 1, 31--36. 

[18] Caffarelli, Luis A. The continuity of the temperature in the Stefan problem. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 13--23, Pitagora, Bologna, 1979 

[17] Caffarelli, Luis A.; Friedman, Avner Asymptotic estimates for the dam problem with several layers. Indiana Univ. Math. J. 27 (1978), no. 4, 551--580. 

[16] Caffarelli, Luis A.; Friedman, Avner The one-phase Stefan problem and the porous medium diffusion equation: continuity of the solution in nn space dimensions. Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 5, 2084. 

[15] Caffarelli, Luis A.; Friedman, Avner The dam problem with two layers. Arch. Rational Mech. Anal. 68 (1978), no. 2, 125--154. 

[14] Caffarelli, Luis A.; Friedman, Avner Regularity of the solution of the quasivariational inequality for the impulse control problem. Comm. Partial Differential Equations 3 (1978), no. 8, 745--753. 

[13] Caffarelli, Luis A. Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27 (1978), no. 1, 73--77. 

[12] Caffarelli, L. A.; Rivière, Nèstor M. The smoothness of the elastic-plastic free boundary of a twisted bar. Proc. Amer. Math. Soc. 63 (1977), no. 1, 56--58. 

[11] Caffarelli, L. A.; Rivière, Nèstor M. Asymptotic behaviour of free boundaries at their singular points. Ann. Math. (2) 106 (1977), no. 2, 309--317. 

[10] Caffarelli, Luis A. The regularity of free boundaries in higher dimensions. Acta Math. 139 (1977), no. 3-4, 155--184. 

[9] Caffarelli, Luis A. The smoothness of the free surface in a filtration problem. Arch. Rational Mech. Anal. 63 (1976), no. 1, 77--86. 

[8] Caffarelli, L. A.; Rivière, N. M. Smoothness and analyticity of free boundaries in variational inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 289--310. 

[7] Caffarelli, L. A.; Rivière, N. M. On the rectifiability of domains with finite perimeter. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 177--186. 

[6] Caffarelli, Luis A. The regularity of elliptic and parabolic free boundaries. Bull. Amer. Math. Soc. 82 (1976), no. 4, 616--618. 

[5] Caffarelli, Luis A. On the Hölder continuity of multiple valued harmonic functions. Indiana Univ. Math. J. 25 (1976), no. 1, 79--84. 

[4] Caffarelli, L. A. Certain multiple valued harmonic function. Proc. Amer. Math. Soc. 54 (1976), 90--92. 

[3] Caffarelli, Luis A. Surfaces of minimum capacity for a knot. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 497--505. 

[2] Caffarelli, Luis A.; Calderón, Calixto P. On Abel summability of multiple Jacobi series. Colloq. Math. 30 (1974), 277--288. 

[1] Caffarelli, Luis A.; Calderón, Calixto P. Weak type estimates for the Hardy-Littlewood maximal functions. Studia Math. 49 (1973/74), 217--223.  

posted @ 2017-03-19 18:34  张文彪  阅读(689)  评论(0编辑  收藏  举报