Luis A. Caffarelli教授的出版作品【2】

[229] Caffarelli, Luis A.; Huang, Qingbo Reflector problem in RnRn endowed with non-Euclidean norm. Arch. Ration. Mech. Anal. 193 (2009), no. 2, 445--473. 

[228] Caffarelli, L. A.; Mellet, A. Random homogenization of an obstacle problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 2, 375--395. 

[227] Caffarelli, Luis; Silvestre, Luis Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62 (2009), no. 5, 597--638. 

[226] Caffarelli, Luis; Lin, Fanghua Nonlocal heat flows preserving the L2L2 energy. Discrete Contin. Dyn. Syst. 23 (2009), no. 1-2, 49--64. 

[225] Caffarelli, L. A.; Oliker, V. I. Weak solutions of one inverse problem in geometric optics. Problems in mathematical analysis. No. 37. J. Math. Sci. (N. Y.) 154 (2008), no. 1, 39--49. 

[224] Caffarelli, L. A.; Glowinski, R. Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16 (2008), no. 3, 185--216. 

[223] Caffarelli, Luis A.; Stefanelli, Ulisse A counterexample to C2,1C2,1 regularity for parabolic fully nonlinear equations. Comm. Partial Differential Equations 33 (2008), no. 7-9, 1216--1234. 

[222] Caffarelli, Luis; Lee, Ki-ahm Viscosity method for homogenization of highly oscillating obstacles. Indiana Univ. Math. J. 57 (2008), no. 4, 1715--1741. 

[221] Caffarelli, Luis; Mellet, Antoine Random homogenization of fractional obstacle problems. Netw. Heterog. Media 3 (2008), no. 3, 523--554. 

[220] Caffarelli, Luis; Silvestre, Luis Issues in homogenization for problems with non divergence structure. Calculus of variations and nonlinear partial differential equations, 43--74, Lecture Notes in Math., 1927, Springer, Berlin, 2008. 

[219] Ambrosio, Luigi; Caffarelli, Luis; Crandall, Michael G.; Evans, Lawrence C.; Fusco, Nicola Calculus of variations and nonlinear partial differential equations. Lectures given at the C. I. M. E. Summer School held in Cetraro, June 27--July 2, 2005. With a historical overview of C. I. M. E. courses on the topic by Elvira Mascolo. Edited by Bernard Dacorogna and Paolo Marcellini. Lecture Notes in Mathematics, 1927. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008. xxii+196 pp. ISBN 978-3-540-75913-3 

[218] Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S. The structure of the free boundary for lower dimensional obstacle problems. Amer. J. Math. 130 (2008), no. 2, 485--498. 

[217] Caffarelli, L. A.; Lin, Fang-Hua Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Amer. Math. Soc. 21 (2008), no. 3, 847--862. 

[216] Caffarelli, Luis A.; Gutiérrez, Cristian E.; Huang, Qingbo On the regularity of reflector antennas. Ann. of Math. (2) 167 (2008), no. 1, 299--323. 

[215] Caffarelli, Luis A.; Salsa, Sandro; Silvestre, Luis Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008), no. 2, 425--461. 

[214] Caffarelli, Luis A.; Souganidis, Panagiotis E. A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Comm. Pure Appl. Math. 61 (2008), no. 1, 1--17. 

[213] Caffarelli, Luis Free boundary problems for fractional powers of the Laplacian. A great mathematician of the nineteenth century. Papers in honor of Eugenio Beltrami (1835--1900) (Italian), 273--286, Ist. Lombardo Accad. Sci. Lett. Incontr. Studio, 39, LED--Ed. Univ. Lett. Econ. Diritto, Milan, 2007. 

[212] Caffarelli, L. A.; Mellet, A. Capillary drops on an inhomogeneous surface. Perspectives in nonlinear partial differential equations,, 175--201, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007. 

[211] Caffarelli, Luis; Guan, Pengfei; Ma, Xi-Nan A constant rank theorem for solutions of fully nonlinear elliptic equations. Comm. Pure Appl. Math. 60 (2007), no. 12, 1769--1791. 

[210] Caffarelli, Luis; Silvestre, Luis An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245--1260. 

[209] Caffarelli, L. A.; Lin, Fang Hua An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007), no. 1-2, 5--18. 

[208] Caffarelli, L. A.; Mellet, A. Capillary drops: contact angle hysteresis and sticking drops. Calc. Var. Partial Differential Equations 29 (2007), no. 2, 141--160. 

[207] Caffarelli, L.; Lee, K. Homogenization of oscillating free boundaries: the elliptic case. Comm. Partial Differential Equations 32 (2007), no. 1-3, 149--162. 

[206] Caffarelli, L. A.; Lee, K.-A.; Mellet, A. Flame propagation in one-dimensional stationary ergodic media. Math. Models Methods Appl. Sci. 17 (2007), no. 1, 155--169. 

[205] Caffarelli, Luis A.; Roquejoffre, Jean-Michel Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames. Arch. Ration. Mech. Anal. 183 (2007), no. 3, 457--487. 

[204] Caffarelli, Luis A homogenization method for non variational problems. Current developments in mathematics, 2004, 73--93, Int. Press, Somerville, MA, 2006. 

[203] Caffarelli, Luis; Manasevich, Raul; Rodrigues, Hildebrando; Yi, Yingfei Preface [Pan-American Advanced Studies Institute on Differential Equations and Nonlinear Analysis]. Held in Santiago, January 10--21, 2005. J. Dynam. Differential Equations 18 (2006), no. 3, 483--484. 

[202] Caffarelli, L.; Li, YanYan Some multi-valued solutions to Monge-Ampère equations. Comm. Anal. Geom. 14 (2006), no. 3, 411--441. 

[201] Caffarelli, Luis A.; Córdoba, Antonio Phase transitions: uniform regularity of the intermediate layers. J. Reine Angew. Math. 593 (2006), 209--235. 

[200] Caffarelli, Luis A.; Wang, Lihe A Harnack inequality approach to the interior regularity gradient estimates of geometric equations. J. Partial Differential Equations 19 (2006), no. 1, 16--25. 

[199] Caffarelli, L. A.; Lee, K.-A.; Mellet, A. Homogenization and flame propagation in periodic excitable media: the asymptotic speed of propagation. Comm. Pure Appl. Math. 59 (2006), no. 4, 501--525. 

[198] Caffarelli, L.; Lee, Ki-Ahm Homogenization of nonvariational viscosity solutions. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29 (2005), no. 1, 89--100. 

[197] Caffarelli, Luis; Salsa, Sandro A geometric approach to free boundary problems. Graduate Studies in Mathematics, 68 American Mathematical Society, Providence, RI. 2005. x+270 pp. ISBN: 0-8218-3784-2 

[196] Caffarelli, Luis A.; de la Llave, Rafael Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118 (2005), no. 3-4, 687--719. 

[195] Caffarelli, Luis A.; Souganidis, Panagiotis E.; Wang, L. Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Comm. Pure Appl. Math. 58 (2005), no. 3, 319--361. 

[194] Caffarelli, L. A.; Shahgholian, H. The structure of the singular set of a free boundary in potential theory. Izv. Nats. Akad. Nauk Armenii Mat. 39 (2004), no. 2, 43--58; translation in J. Contemp. Math. Anal. 39 (2004), no. 2, 2--20 (2005) 

[193] Athanasopoulos, I.; Caffarelli, L. A. Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 49--66, 226; translation in J. Math. Sci. (N. Y.) 132 (2006), no. 3, 274--284. 

[192] Caffarelli, Luis A.; Jerison, David; Kenig, Carlos E. Global energy minimizers for free boundary problems and full regularity in three dimensions. Noncompact problems at the intersection of geometry, analysis, and topology, 83--97, Contemp. Math., 350Amer. Math. Soc., Providence, RI, 2004. 

[191] Caffarelli, Luis; Petrosyan, Arshak; Shahgholian, Henrik Regularity of a free boundary in parabolic potential theory. J. Amer. Math. Soc. 17 (2004), no. 4, 827--869. (electronic). 

[190] Caffarelli, Luis A. The Monge Ampère equation and optimal transportation. Recent advances in the theory and applications of mass transport, 43--52, Contemp. Math. 353,Amer. Math. Soc., Providence, RI, 2004. 

[189] Caffarelli, Luis A.; Lee, Ki-Ahm; Mellet, Antoine Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172 (2004), no. 2, 153--190. 

[188] Caffarelli, L.; Li, Yan Yan A Liouville theorem for solutions of the Monge-Ampère equation with periodic data. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 97--120. 

[187] Caffarelli, Luis; Salazar, Jorge; Shahgholian, Henrik Free-boundary regularity for a problem arising in superconductivity. Arch. Ration. Mech. Anal. 171 (2004), no. 1, 115--128. 

[186] Caffarelli, Luis Some Liouville theorems for PDE problems in periodic media. Renato Caccioppoli and modern analysis. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), no. 3, 247--256 (2004). 

[185] Caffarelli, Luis The Monge-Ampère equation and optimal transportation, an elementary review. Optimal transportation and applications (Martina Franca, 2001), 1--10, Lecture Notes in Math. 1813 Springer, Berlin, 2003. 

[184] Ambrosio, L.; Caffarelli, L. A.; Brenier, Y.; Buttazzo, G.; Villani, C. Optimal transportation and applications. Lectures from the C.I.M.E. Summer School held in Martina Franca, September 2--8, 2001. Edited by Caffarelli and S. Salsa. Lecture Notes in Mathematics, 1813. Springer-Verlag, Berlin, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 2003. viii+164 pp. ISBN: 3-540-40192-X 

[183] Cabré, Xavier; Caffarelli, Luis A. Interior C2,αC2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. (9) 82 (2003), no. 5, 573--612. 

[182] Caffarelli, Luis A.; Huang, Qingbo Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations. Duke Math. J. 118 (2003), no. 1, 1--17. 

[181] Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S. Stefan-like problems with curvature. J. Geom. Anal. 13 (2003), no. 1, 21--27. 

[180] Caffarelli, L.; Li, YanYan An extension to a theorem of Jörgens, Calabi, and Pogorelov. Comm. Pure Appl. Math. 56 (2003), no. 5, 549--583. 

[179] Caffarelli, Luis A. Non linear elliptic theory and the Monge-Ampere equation. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 179--187, Higher Ed. Press, Beijing, 2002. 

[178] Caffarelli,Luis A.; Jerison, David; Kenig, Carlos E. Some new monotonicity theorems with applications to free boundary problems. Ann. of Math. (2) 155 (2002), 369--404 

[177] Caffarelli,Luis A.; Roquejoffre, Jean-Michel A nonlinear oblique derivative boundary value problem for the heat equation: analogy with the porous medium equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 1, 41--80. 

[176] Caffarelli, L.; Salazar, J. Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves. Trans. Amer. Math. Soc. 354 (2002), no. 8, 3095--3115 (electronic). 

[175] Caffarelli, Luis A. Erratum: "Monotonicity of optimal transportation and the FKG and related inequalities'' [Comm. Math. Phys. 214 (2000), no. 3, 547--563; Comm. Math. Phys. 225 (2002), no. 2, 449--450. 

[174] Caffarelli, Luis A.; Feldman, Mikhail; McCann, Robert J. Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2002), no. 1, 1--26 (electronic). 

[173] Cabré, Xavier; Caffarelli, Luis A. Regularity theory for a class of nonconvex fully nonlinear elliptic equations. XVII CEDYA: Congress on Differential Equations and Applications/VII CMA: Congress on Applied Mathematics (Spanish) (Salamanca, 2001), 57--62, Dep. Mat. Apl., Univ. Salamanca, Salamanca, 2001. 

[172] Caffarelli, Luis A.; Viaclovsky, Jeff A. On the regularity of solutions to Monge-Ampère equations on Hessian manifolds. Comm. Partial Differential Equations 26 (2001), no. 11-12, 2339--2351. 

[171] Caffarelli, Luis A.; de la Llave, Rafael Planelike minimizers in periodic media. Comm. Pure Appl. Math. 54 (2001), no. 12, 1403--1441. 

[170] Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S. The free boundary in an inverse conductivity problem. J. Reine Angew. Math. 534 (2001), 1--31. 

[169] Athanasopoulos, I.; Caffarelli, L. A.; Kenig, C.; Salsa, S. An area-Dirichlet integral minimization problem. Comm. Pure Appl. Math 54 (2001), no. 4, 479--499. 

[168] Caffarelli, Luis A. Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys. 214 (2000), no. 3, 547--563. 

[167] Caffarelli, Luis A.; Yuan, Yu A priori estimates for solutions of fully nonlinear equations with convex level set. Indiana Univ. Math. J. 49 (2000), no. 2, 681--695. 

[166] Caffarelli, Luis; Dolbeault, Jean; Markowich, Peter A.; Schmeiser, Christian On Maxwellian equilibria of insulated semiconductors. Interfaces Free Bound. 2 (2000), no. 3, 331--339. 

[165] Caffarelli, Luis A.; Karp, Lavi; Shahgholian, Henrik Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math. (2) 151 (2000), no. 1, 269--292. 

[164] Caffarelli, Luis A. The Monge Ampère equation, allocation problems, and elliptic systems with affine invariance. Harmonic analysis and partial differential equations (Chicago, IL, 1996), 117--126, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999. 

[163] Caffarelli, Luis A. The Harnack inequality and non-divergence equations. Nonlinear partial differential equations (Evanston, IL, 1998), 27--34, Contemp. Math. 238Amer. Math. Soc., Providence, RI, 1999. 

[162] Caffarelli, L. A. A note on nonlinear homogenization. Comm. Pure Appl. Math. 52 (1999), no. 7, 829--838. 

[161] Caffarelli, Luis; Vázquez, Juan Luis Viscosity solutions for the porous medium equation. Differential equations: La Pietra 1996 (Florence), 13--26, Proc. Sympos. Pure Math. 65Amer. Math. Soc., Providence, RI, 1999. 

[160] Caffarelli, Luis A.; Milman, Mario, Eds. Monge Ampère equation: applications to geometry and optimization. 1999 Proceedings of the NSF-CBMS Conference held at Florida Atlantic University, Deerfield Beach, FL, July 9-13, 1997. x+172 pp. Contemp. Math. 226 Amer. Math. Soc., Providence, RI, 1999. 

[159] Caffarelli, Luis A.; Kochengin, Sergey A.; Oliker, Vladimir I. On the numerical solution of the problem of reflector design with given far-field scattering data. Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), 13--32, Contemp. Math. 226Amer. Math. Soc., Providence, RI, 1999. 

[158] Caffarelli, Luis A.; E, Weinan, Eds. Hyperbolic equations and frequency interactions. Lectures from the Graduate Summer School on Nonlinear Wave Phenomena, Park City, UT, July 9--29, 1995. xii+466 pp. Park City Mathematics Series 5 IAS, 1999. 

[157] Caffarelli, Luis A. The obstacle problem. Lezioni Fermiane. [Fermi Lectures] Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, 1998. ii+54 pp. 

[156] Caffarelli, L. A. The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383--402. 

[155] Caffarelli, Luis A.; Kenig, Carlos E. Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Amer. J. Math. 120 (1998), no. 2, 391--439. 

[154] Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S. Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math. 51 (1998), no. 1, 77--112. 

[153] Caffarelli, L. A.; Peral, I. On W1,pW1,p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51 (1998), no. 1, 1--21. 

[152] Berestycki, Henri; Caffarelli, Luis; Nirenberg, Louis Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 69--94. 

[151] Caffarelli, Luis The work of Jean Bourgain [see MR1403907 (97c:00049)]. Fields Medallists' lectures, 537--539, World Sci. Ser. 20th Century Math. 5World Sci. Publ., River Edge, NJ, 1997. 

[150] Caffarelli, L. A.; Lederman, C.; Wolanski, N. Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem. Indiana Univ. Math. J. 46 (1997), no. 3, 719--740. 

[149] Caffarelli, L. A.; Lederman, C.; Wolanski, N. Uniform estimates and limits for a two phase parabolic singular perturbation problem. Indiana Univ. Math. J., 46 (1997), no. 2, 453--489. 

[148] Berestycki, H.; Caffarelli, L. A.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. 50 (1997), no. 11, 1089--1111. 

[147] Caffarelli, Luis A.; Gutiérrez, Cristian E. Singular integrals related to the Monge-Ampère equation. Wavelet theory and harmonic analysis in applied sciences (Buenos Aires, 1995), 3--13, Appl. Numer. Harmon. Anal. Birkhäuser Boston, Boston, MA, 1997. 

[146] Caffarelli, Luis A. The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997), no. 6, 563--591. 

[145] Caffarelli, Luis A.; Gutiérrez, Cristian E. Properties of the solutions of the linearized Monge-Ampère equation. Amer. J. Math. 119 (1997), no. 2, 423--465. 

[144] Caffarelli, Luis A. Boundary regularity of maps with convex potentials. II. Ann. of Math. (2) 144 (1996), no. 3, 453--496. 

[143] Athanasopoulos, I.; Caffarelli, L.; Salsa, S. Regularity of the free boundary in parabolic phase-transition problems. Acta Math. 176 (1996), no. 2, 245--282. 

[142] Berestycki, H.; Caffarelli, L. A.; Nirenberg, L. Inequalities for second-order elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash, Jr. Duke Math. J. 81 (1996), no. 2, 467--494. 

[141] Athanasopoulos, I.; Caffarelli, L.; Salsa, S. Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. of Math. (2) 143 (1996), no. 3, 413--434. 

[140] Caffarelli, L.; Crandall, M. G.; Kocan, M.; Swiech, A. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996), no. 4, 365--397. 

[139] Caffarelli, Luis A.; Jerison, David; Lieb, Elliott H. On the case of equality in the Brunn-Minkowski inequality for capacity. Adv. Math. 117 (1996), no. 2, 193--207. 

[138] Caffarelli, Luis A. Allocation maps with general cost functions. Partial differential equations and applications, 29--35, Lecture Notes in Pure and Appl. Math. 177 Dekker, New York, 1996. 

[137] Caffarelli, Luis; Kohn, Joseph J. Louis Nirenberg receives National Medal of Science. With contributions by Luis Caffarelli and Joseph J. Kohn. Notices Amer. Math. Soc. 43 (1996) 1111--1116. 

[136] Caffarelli, Luis A. A priori estimates and the geometry of the Monge-Ampère equation. Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 5--63, IAS/Park City Math. Ser., 2Amer. Math. Soc., Providence, RI, 1996. 

[135] Caffarelli, Luis A.; Gutiérrez, Cristian E. Real analysis related to the Monge-Ampère equation. Trans. Amer. Math. Soc. 348 (1996), no. 3, 1075--1092. 

[134] Caffarelli, Luis The work of Jean Bourgain. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) 3--5, Birkhäuser, Basel, 1995. 

[133] Caffarelli, Luis A.; Cabré, Xavier Regularity for viscosity solutions of fully nonlinear equations F(D2u)=0F(D2u)=0 . Topol. Methods Nonlinear Anal. 6 (1995), no. 1, 31--48. 

[132] Caffarelli, Luis A.; Muler, Nora E. An LL∞ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133 (1995), no. 2, 129--144. 

[131] Caffarelli, Luis A.; Cabré, Xavier Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43 American Mathematical Society, Providence, RI, 1995. vi+104 pp. 

[130] Caffarelli, Luis A.; Milman, Mario The regularity of planar maps with bounded compression and rotation. Volume in homage to Dr. Rodolfo A. Ricabarra (Spanish), 29--34, Vol. Homenaje 1 Univ. Nac. del Sur, Bah铆a Blanca, 1995. 

[129] Caffarelli, Luis A. Uniform Lipschitz regularity of a singular perturbation problem. Differential Integral Equations 8 (1995), no. 7, 1585--1590. 

[128] Caffarelli, Luis A.; Yang, Yi Song Vortex condensation in the Chern-Simons Higgs model: an existence theorem. Comm. Math. Phys. 168 (1995), no. 2, 321--336. 

[127] Caffarelli, Luis A.; Córdoba, Antonio Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. 48 (1995), no. 1, 1--12. 

[126] Caffarelli, Luis A.; Córdoba, Antonio Correction: "An elementary regularity theory of minimal surfaces" [Differential Integral Equations 6 (1993), no. 1, 1--13; MR1190161 (94c:49042)]. Differential Integral Equations 8 (1995), no. 1, 223. 

[125] Caffarelli, Luis A.; Vázquez, Juan L. A free-boundary problem for the heat equation arising in flame propagation. Trans. Amer. Math. Soc. 347 (1995), no. 2, 411--441. 

[124] Caffarelli, Luis; Garofalo, Nicola; Segàla, Fausto, A gradient bound for entire solutions of quasi-linear equations and its consequences. Comm. Pure Appl. Math. 47 (1994), no. 11, 1457--1473. 

[123] Caffarelli, Luis A. A monotonicity formula for heat functions in disjoint domains. Boundary value problems for partial differential equations and applications 53--60, RMA Res. Notes Appl. Math. 29 Masson, Paris, 1993. 

[122] Berestycki, H.; Caffarelli, L. A.; Nirenberg, L. Symmetry for elliptic equations in a half space. Boundary value problems for partial differential equations and applications 27--42, RMA Res. Notes Appl. Math. 29 Masson, Paris, 1993. 

[121] Caffarelli, Luis A. A note on the degeneracy of convex solutions to Monge Ampère equation. Comm. Partial Differential Equations 18 (1993), no. 7-8, 1213--1217. 

[120] Caffarelli, Luis A.; Wang, Lihe A Harnack inequality approach to the interior regularity of parabolic equations. Indiana Univ. Math. J. 42 (1993), no. 1, 159--165. 

[119] Caffarelli, Luis A.; Wang, Lihe A Harnack inequality approach to the interior regularity of elliptic equations. Indiana Univ. Math. J. 42 (1993), no. 1, 145--157. 

[118] Caffarelli, Luis A.; Córdoba, Antonio An elementary regularity theory of minimal surfaces. Differential Integral Equations 6 (1993), no. 1, 1--13. 

[117] Caffarelli, L. The regularity of mappings with convex potentials. Partial differential equations and related subjects (Trento, 1990) 53--58, Pitman Res. Notes Math. Ser. 269 Longman Sci. Tech., Harlow, 1992. 

[116] Caffarelli, Luis A. Regularity of solutions and level surfaces of elliptic equations. American Mathematical Society centennial publications,Vol. II (Providence, RI, 1988) 7--13, Amer. Math. Soc., Providence, RI, 1992. 

[115] Caffarelli, Luis A. Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992), no. 9, 1141--1151. 

[114] Caffarelli, Luis A. The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992), no. 1, 99--104. 

[113] Caffarelli, Luis A. Some regularity properties of solutions of Monge-Ampère equation. Comm. Pure Appl. Math. 44 (1991), no. 8-9, 965--969 

[112] Caffarelli, L. A. Free boundary problems and their singular perturbations. Frontiers in pure and applied mathematics, 43--46, North-Holland, Amsterdam, 1991. 

[111] Caffarelli, Luis A.; Wolanski, Noemí I. C1,αC1,α regularity of the free boundary for the NN -dimensional porous media equation. Comm. Pure Appl. Math. 43 (1990), no. 7, 885--902. 

[110] Caffarelli, Luis A. Interior regularity of solutions to Monge-Ampère equations. Harmonic analysis and partial differential equations (Boca Raton, FL, 1988), 13--17, Contemp. Math. 107 Amer. Math. Soc., Providence, RI, 1990. 

[109] Caffarelli, Luis A.; Spruck, Joel Variational problems with critical Sobolev growth and positive Dirichlet data. Indiana Univ. Math. J. 39 (1990), no. 1, 1--18. 

[108] Berestycki, H.; Caffarelli, L. A.; Nirenberg, L. Uniform estimates for regularization of free boundary problems. Analysis and partial differential equations 567--619, Lecture Notes in Pure and Appl. Math. 122 Dekker, New York, 1990. 

[107] Caffarelli, Luis A. Interior W2,pW2,p estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131 (1990), no. 1, 135--150. 

[106] Caffarelli, L. A. A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131 (1990), no. 1, 129--134. 

[105] Caffarelli, Luis A. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2) 130 (1989), no. 1, 189--213. 

[104] Caffarelli, Luis A. Free boundary problems. A survey. Topics in calculus of variations (Montecatini Terme, 1987), 31--61, Lecture Notes in Math. 1365 Springer, Berlin, 1989. 

[103] Caffarelli, L. A. A priori estimates for fully nonlinear second order elliptic equations. Nonlinear variational problems, Vol. II (Isola d'Elba, 1986), 99--106, Pitman Res. Notes Math. Ser. 193 Longman Sci. Tech., Harlow, 1989. 

[102] Caffarelli, Luis A.; Gidas, Basilis; Spruck, Joel Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42 (1989), no. 3, 271--297. 

[101] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42 (1989), no. 1, 55--78. 

[100] Caffarelli, Luis Elliptic second order equations. Rend. Sem. Mat. Fis. Milano 58 (1988), 253--284 (1990). 

[99] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on XX . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 4, 583--602 (1989). 

[98] Caffarelli, Luis A.; Friedman, Avner A model of dislocations and the associated free boundary problem. Indiana Univ. Math. J. 37 (1988), no. 3, 451--479. 

[97] Caffarelli, L.; Nirenberg, L.; Spruck, J. On a form of Bernstein's theorem. Analyse mathématique et applications, 55--66, Gauthier-Villars, Montrouge, 1988. 

[96] Caffarelli, Luis A.; Friedman, Avner Blowup of solutions of nonlinear heat equations. J. Math. Anal. Appl. 129 (1988), no. 2, 409--419. 

[95] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces. Comm. Pure Appl. Math. 41 (1988), no. 1, 47--70. 

posted @ 2017-03-19 18:32  张文彪  阅读(491)  评论(0编辑  收藏  举报