Schwarz导数与凹凸性
命题 1: 定义区间$I$上的Schwarz导数
$$D^{2}f(x)=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}$$
若$D^{2}f(x)\geq 0$则$f(x)$为$I$上的下凸函数,若$D^{2}f(x)\leq 0$,则$f(x)$为$I$上的上凸函数.
证明: 任意$\varepsilon >0$,构造辅助函数
$$F(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]+\varepsilon (x-a)(x-b)$$
经计算有
\begin{align*}
D^{2}F(x)&=\lim_{h\to 0}\frac{F(x+h)+F(x-h)-2F(x)}{h^{2}}\\
&=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}+2\varepsilon\\
&\geq 2\varepsilon
\end{align*}
构造的辅助函数满足$F(a)=F(b)=0$且为$[a,b]$上的连续函数, 我们证明其最大值必然在端点处取到, 否则设$x_{0}\in (a,b)$且$F(x_{0})=\max_{x\in [a,b]}\{F(x)\}$
$$\frac{F(x_{0}+h)+F(x_{0}-h)-2F(x_{0})}{h^{2}}\leq 0$$
取$h\to 0$得$D^{2}F(x_{0})\leq 0$与$D^{2}F(x)\geq 2\varepsilon$矛盾. 故$F(x)\leq F(a)=0$即
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-\varepsilon (x-a)(x-b)$$
令$\varepsilon \to 0$,有
$$f(x)\leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$
取$x=\frac{a+b}{2}$, 便得
$$f\left(\frac{a+b}{2}\right)\leq \frac{1}{2}f(a)+\frac{1}{2}f(b)$$
$f(x)$为$I$上下凸函数, 反之证明方法类似只需把$\varepsilon$改为负的即可.
命题 2: 若$f(x)$既为$I$上的下凸函数又为上凸函数,则$f(x)$为$I$上的线性函数.
证明: 设$x=\lambda_{1}a+\lambda_{2}b$,其中$\lambda_{1}+\lambda_{2}=1$.那么
$$f(x)=f(\lambda_{1}a+\lambda_{2}b)=\lambda_{1}f(a)+\lambda_{2}(b)$$
经简单计算
$$\frac{f(x)-f(a)}{x-a}=\frac{(\lambda_{1}-1)f(a)+\lambda_{2} f(b)}{(\lambda_{1}-1)a+\lambda_{2}b}=\frac{f(b)-f(a)}{b-a}$$
故
$$f(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$$