【LeetCode】随机化算法 random(共6题)

【384】Shuffle an Array(2019年3月12日)

Shuffle a set of numbers without duplicates.

实现一个类,里面有两个 api,structure 如下:

 

 1 class Solution {
 2 public:
 3     Solution(vector<int> nums) {
 4     }
 5     
 6     /** Resets the array to its original configuration and return it. */
 7     vector<int> reset() {
 8     }
 9     
10     /** Returns a random shuffling of the array. */
11     vector<int> shuffle() {
12     }
13 };

 

题解:我们 shuffle 的时候,对于每一个元素 res[i], 都随机出一个 res[j],交换这两个元素就可以了。

 1 class Solution {
 2 public:
 3     Solution(vector<int> nums) {
 4         this->nums = nums;
 5     }
 6     
 7     /** Resets the array to its original configuration and return it. */
 8     vector<int> reset() {
 9         return nums;
10     }
11     
12     /** Returns a random shuffling of the array. */
13     vector<int> shuffle() {
14         const int n = nums.size();
15         vector<int> res(nums);
16         for (int i = 0; i < n; ++i) {
17             int j = rand() % n;
18             swap(res[i], res[j]);
19         }
20         return res;
21     }
22     vector<int> nums;
23 };
24 
25 /**
26  * Your Solution object will be instantiated and called as such:
27  * Solution obj = new Solution(nums);
28  * vector<int> param_1 = obj.reset();
29  * vector<int> param_2 = obj.shuffle();
30  */
View Code

 

 

【470】Implement Rand10() Using Rand7() (2018年11月15日,新学的算法)(2019年1月23日,算法群复习)

给了一个现成的api rand7(),这个接口能产生 [1,7] 区间的随机数。根据这个api,写一个 rand10() 的算法生成 [1, 10] 区间随机数。 

题解:这个题《程序员代码面试指南》上讲了这题。我粗浅的描述一下产生过程:

(1)rand7() 等概率的产生 1,2, 3, 4, 5, 6,7.

(2)rand7()-1 等概率的产生 [0, 6]

(3)(rand7() - 1) * 7 等概率的产生 0, 7, 14, 21, 28, 35, 42

(4)(rand7() - 1) * 7 + (rand7() - 1)等概率的产生 [0, 48] 这49个数字

(5)如果步骤4的结果大于等于40,那么就重复步骤4,直到产生的数小于40.

(6)把步骤5的结果mod 10再加1,就会等概率的随机生成[1, 10].

总之,公式是 (randX() - 1) * X + (randX() - 1)。

 1 // The rand7() API is already defined for you.
 2 // int rand7();
 3 // @return a random integer in the range 1 to 7
 4 
 5 class Solution {
 6 public:
 7     int rand10() {
 8         int num = 0;
 9         do {
10             num = (rand7()-1) * 7 + (rand7()-1);
11         } while(num >= 40);
12         return num % 10 + 1;
13     }
14 };
View Code

本题还有两个follow-up:

  1. What is the expected value for the number of calls to rand7() function?

  2. Could you minimize the number of calls to rand7()?

 《程序员代码面试指南》后面的进阶算法还没看,chp 9, P391

 

【478】Generate Random Point in a Circle 

 

【497】Random Point in Non-overlapping Rectangles 

 

【519】Random Flip Matrix 

 

【528】Random Pick with Weight (2018年12月31日,昨天算法群 mock 原题)

mock相关链接:https://www.cnblogs.com/zhangwanying/p/10199941.html  (第一场-第四题)

Given an array w of positive integers, where w[i] describes the weight of index i, write a function pickIndex which randomly picks an index in proportion to its weight.

Note:

  1. 1 <= w.length <= 10000
  2. 1 <= w[i] <= 10^5
  3. pickIndex will be called at most 10000 times.
Example 1:
Input: 
["Solution","pickIndex"]
[[[1]],[]]
Output: [null,0]

Example 2:
Input: 
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output: [null,0,1,1,1,0]

题解:把 weight 数组求前缀和,然后随机出一个在区间 [0, tot) 中的随机数,然后在前缀和数组中二分判断index。

 1 class Solution {
 2 public:
 3     Solution(vector<int> w) {
 4         const int n = w.size();
 5         vector<int> summ2(n+1, 0);
 6         for (int i = 1; i <= n; ++i) {
 7             summ2[i] = w[i-1] + summ2[i-1];
 8         }
 9         summ = summ2;
10     }
11     
12     int pickIndex() {
13         int tot = summ.back();
14         int r = (rand() % tot) + 1;
15         auto iter = lower_bound(summ.begin(), summ.end(), r);
16         int ret = distance(summ.begin(), iter) - 1;
17         return ret;
18     }
19     vector<int> summ;
20 };
21 
22 /**
23  * Your Solution object will be instantiated and called as such:
24  * Solution obj = new Solution(w);
25  * int param_1 = obj.pickIndex();
26  */
View Code

 

【710】Random Pick with Blacklist 

posted @ 2019-03-12 14:52  zhangwanying  阅读(2689)  评论(0编辑  收藏  举报