ArrayList源码剖析

ArrayList简介

 

ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存。

ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类。

ArrayList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问,实现了Cloneable接口,能被克隆。

ArrayList源码剖析

 

ArrayList的源码如下(加入了比较详细的注释):

package java.util;    
  
public class ArrayList<E> extends AbstractList<E>    
       implements List<E>, RandomAccess, Cloneable, java.io.Serializable    
{    
   // 序列版本号    
   private static final long serialVersionUID = 8683452581122892189L;    
  
   // ArrayList基于该数组实现,用该数组保存数据   
   private transient Object[] elementData;    
  
   // ArrayList中实际数据的数量    
   private int size;    
  
   // ArrayList带容量大小的构造函数。    
   public ArrayList(int initialCapacity) {    
       super();    
       if (initialCapacity < 0)    
           throw new IllegalArgumentException("Illegal Capacity: "+    
                                              initialCapacity);    
       // 新建一个数组    
       this.elementData = new Object[initialCapacity];    
   }    
  
   // ArrayList无参构造函数。默认容量是10。    
   public ArrayList() {    
       this(10);    
   }    
  
   // 创建一个包含collection的ArrayList    
   public ArrayList(Collection<? extends E> c) {    
       elementData = c.toArray();    
       size = elementData.length;    
       if (elementData.getClass() != Object[].class)    
           elementData = Arrays.copyOf(elementData, size, Object[].class);    
   }    
  
  
   // 将当前容量值设为实际元素个数    
   public void trimToSize() {    
       modCount++;    
       int oldCapacity = elementData.length;    
       if (size < oldCapacity) {    
           elementData = Arrays.copyOf(elementData, size);    
       }    
   }    
  
  
   // 确定ArrarList的容量。    
   // 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”    
   public void ensureCapacity(int minCapacity) {    
       // 将“修改统计数”+1,该变量主要是用来实现fail-fast机制的    
       modCount++;    
       int oldCapacity = elementData.length;    
       // 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”    
       if (minCapacity > oldCapacity) {    
           Object oldData[] = elementData;    
           int newCapacity = (oldCapacity * 3)/2 + 1;    
           //如果还不够,则直接将minCapacity设置为当前容量  
           if (newCapacity < minCapacity)    
               newCapacity = minCapacity;    
           elementData = Arrays.copyOf(elementData, newCapacity);    
       }    
   }    
  
   // 添加元素e    
   public boolean add(E e) {    
       // 确定ArrayList的容量大小    
       ensureCapacity(size + 1);  // Increments modCount!!    
       // 添加e到ArrayList中    
       elementData[size++] = e;    
       return true;    
   }    
  
   // 返回ArrayList的实际大小    
   public int size() {    
       return size;    
   }    
  
   // ArrayList是否包含Object(o)    
   public boolean contains(Object o) {    
       return indexOf(o) >= 0;    
   }    
  
   //返回ArrayList是否为空    
   public boolean isEmpty() {    
       return size == 0;    
   }    
  
   // 正向查找,返回元素的索引值    
   public int indexOf(Object o) {    
       if (o == null) {    
           for (int i = 0; i < size; i++)    
           if (elementData[i]==null)    
               return i;    
           } else {    
               for (int i = 0; i < size; i++)    
               if (o.equals(elementData[i]))    
                   return i;    
           }    
           return -1;    
       }    
  
       // 反向查找,返回元素的索引值    
       public int lastIndexOf(Object o) {    
       if (o == null) {    
           for (int i = size-1; i >= 0; i--)    
           if (elementData[i]==null)    
               return i;    
       } else {    
           for (int i = size-1; i >= 0; i--)    
           if (o.equals(elementData[i]))    
               return i;    
       }    
       return -1;    
   }    
  
   // 反向查找(从数组末尾向开始查找),返回元素(o)的索引值    
   public int lastIndexOf(Object o) {    
       if (o == null) {    
           for (int i = size-1; i >= 0; i--)    
           if (elementData[i]==null)    
               return i;    
       } else {    
           for (int i = size-1; i >= 0; i--)    
           if (o.equals(elementData[i]))    
               return i;    
       }    
       return -1;    
   }    
    
  
   // 返回ArrayList的Object数组    
   public Object[] toArray() {    
       return Arrays.copyOf(elementData, size);    
   }    
  
   // 返回ArrayList元素组成的数组  
   public <T> T[] toArray(T[] a) {    
       // 若数组a的大小 < ArrayList的元素个数;    
       // 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中    
       if (a.length < size)    
           return (T[]) Arrays.copyOf(elementData, size, a.getClass());    
  
       // 若数组a的大小 >= ArrayList的元素个数;    
       // 则将ArrayList的全部元素都拷贝到数组a中。    
       System.arraycopy(elementData, 0, a, 0, size);    
       if (a.length > size)    
           a[size] = null;    
       return a;    
   }    
  
   // 获取index位置的元素值    
   public E get(int index) {    
       RangeCheck(index);    
  
       return (E) elementData[index];    
   }    
  
   // 设置index位置的值为element    
   public E set(int index, E element) {    
       RangeCheck(index);    
  
       E oldValue = (E) elementData[index];    
       elementData[index] = element;    
       return oldValue;    
   }    
  
   // 将e添加到ArrayList中    
   public boolean add(E e) {    
       ensureCapacity(size + 1);  // Increments modCount!!    
       elementData[size++] = e;    
       return true;    
   }    
  
   // 将e添加到ArrayList的指定位置    
   public void add(int index, E element) {    
       if (index > size || index < 0)    
           throw new IndexOutOfBoundsException(    
           "Index: "+index+", Size: "+size);    
  
       ensureCapacity(size+1);  // Increments modCount!!    
       System.arraycopy(elementData, index, elementData, index + 1,    
            size - index);    
       elementData[index] = element;    
       size++;    
   }    
  
   // 删除ArrayList指定位置的元素    
   public E remove(int index) {    
       RangeCheck(index);    
  
       modCount++;    
       E oldValue = (E) elementData[index];    
  
       int numMoved = size - index - 1;    
       if (numMoved > 0)    
           System.arraycopy(elementData, index+1, elementData, index,    
                numMoved);    
       elementData[--size] = null; // Let gc do its work    
  
       return oldValue;    
   }    
  
   // 删除ArrayList的指定元素    
   public boolean remove(Object o) {    
       if (o == null) {    
               for (int index = 0; index < size; index++)    
           if (elementData[index] == null) {    
               fastRemove(index);    
               return true;    
           }    
       } else {    
           for (int index = 0; index < size; index++)    
           if (o.equals(elementData[index])) {    
               fastRemove(index);    
               return true;    
           }    
       }    
       return false;    
   }    
  
  
   // 快速删除第index个元素    
   private void fastRemove(int index) {    
       modCount++;    
       int numMoved = size - index - 1;    
       // 从"index+1"开始,用后面的元素替换前面的元素。    
       if (numMoved > 0)    
           System.arraycopy(elementData, index+1, elementData, index,    
                            numMoved);    
       // 将最后一个元素设为null    
       elementData[--size] = null; // Let gc do its work    
   }    
  
   // 删除元素    
   public boolean remove(Object o) {    
       if (o == null) {    
           for (int index = 0; index < size; index++)    
           if (elementData[index] == null) {    
               fastRemove(index);    
           return true;    
           }    
       } else {    
           // 便利ArrayList,找到“元素o”,则删除,并返回true。    
           for (int index = 0; index < size; index++)    
           if (o.equals(elementData[index])) {    
               fastRemove(index);    
           return true;    
           }    
       }    
       return false;    
   }    
  
   // 清空ArrayList,将全部的元素设为null    
   public void clear() {    
       modCount++;    
  
       for (int i = 0; i < size; i++)    
           elementData[i] = null;    
  
       size = 0;    
   }    
  
   // 将集合c追加到ArrayList中    
   public boolean addAll(Collection<? extends E> c) {    
       Object[] a = c.toArray();    
       int numNew = a.length;    
       ensureCapacity(size + numNew);  // Increments modCount    
       System.arraycopy(a, 0, elementData, size, numNew);    
       size += numNew;    
       return numNew != 0;    
   }    
  
   // 从index位置开始,将集合c添加到ArrayList    
   public boolean addAll(int index, Collection<? extends E> c) {    
       if (index > size || index < 0)    
           throw new IndexOutOfBoundsException(    
           "Index: " + index + ", Size: " + size);    
  
       Object[] a = c.toArray();    
       int numNew = a.length;    
       ensureCapacity(size + numNew);  // Increments modCount    
  
       int numMoved = size - index;    
       if (numMoved > 0)    
           System.arraycopy(elementData, index, elementData, index + numNew,    
                numMoved);    
  
       System.arraycopy(a, 0, elementData, index, numNew);    
       size += numNew;    
       return numNew != 0;    
   }    
  
   // 删除fromIndex到toIndex之间的全部元素。    
   protected void removeRange(int fromIndex, int toIndex) {    
   modCount++;    
   int numMoved = size - toIndex;    
       System.arraycopy(elementData, toIndex, elementData, fromIndex,    
                        numMoved);    
  
   // Let gc do its work    
   int newSize = size - (toIndex-fromIndex);    
   while (size != newSize)    
       elementData[--size] = null;    
   }    
  
   private void RangeCheck(int index) {    
   if (index >= size)    
       throw new IndexOutOfBoundsException(    
       "Index: "+index+", Size: "+size);    
   }    
  
  
   // 克隆函数    
   public Object clone() {    
       try {    
           ArrayList<E> v = (ArrayList<E>) super.clone();    
           // 将当前ArrayList的全部元素拷贝到v中    
           v.elementData = Arrays.copyOf(elementData, size);    
           v.modCount = 0;    
           return v;    
       } catch (CloneNotSupportedException e) {    
           // this shouldn't happen, since we are Cloneable    
           throw new InternalError();    
       }    
   }    
  
  
   // java.io.Serializable的写入函数    
   // 将ArrayList的“容量,所有的元素值”都写入到输出流中    
   private void writeObject(java.io.ObjectOutputStream s)    
       throws java.io.IOException{    
   // Write out element count, and any hidden stuff    
   int expectedModCount = modCount;    
   s.defaultWriteObject();    
  
       // 写入“数组的容量”    
       s.writeInt(elementData.length);    
  
   // 写入“数组的每一个元素”    
   for (int i=0; i<size; i++)    
           s.writeObject(elementData[i]);    
  
   if (modCount != expectedModCount) {    
           throw new ConcurrentModificationException();    
       }    
  
   }    
  
  
   // java.io.Serializable的读取函数:根据写入方式读出    
   // 先将ArrayList的“容量”读出,然后将“所有的元素值”读出    
   private void readObject(java.io.ObjectInputStream s)    
       throws java.io.IOException, ClassNotFoundException {    
       // Read in size, and any hidden stuff    
       s.defaultReadObject();    
  
       // 从输入流中读取ArrayList的“容量”    
       int arrayLength = s.readInt();    
       Object[] a = elementData = new Object[arrayLength];    
  
       // 从输入流中将“所有的元素值”读出    
       for (int i=0; i<size; i++)    
           a[i] = s.readObject();    
   }    
}

 

几点总结

 

关于ArrayList的源码,给出几点比较重要的总结:

1、注意其三个不同的构造方法。无参构造方法构造的ArrayList的容量默认为10,带有Collection参数的构造方法,将Collection转化为数组赋给ArrayList的实现数组elementData。

2、注意扩充容量的方法ensureCapacity。ArrayList在每次增加元素(可能是1个,也可能是一组)时,都要调用该方法来确保足够的容量。当容量不足以容纳当前的元素个数时,就设置新的容量为旧的容量的1.5倍加1,如果设置后的新容量还不够,则直接新容量设置为传入的参数(也就是所需的容量),而后用Arrays.copyof()方法将元素拷贝到新的数组(详见下面的第3点)。从中可以看出,当容量不够时,每次增加元素,都要将原来的元素拷贝到一个新的数组中,非常之耗时,也因此建议在事先能确定元素数量的情况下,才使用ArrayList,否则建议使用LinkedList。

3、ArrayList的实现中大量地调用了Arrays.copyof()和System.arraycopy()方法。我们有必要对这两个方法的实现做下深入的了解。

首先来看Arrays.copyof()方法。它有很多个重载的方法,但实现思路都是一样的,我们来看泛型版本的源码:

public static <T> T[] copyOf(T[] original, int newLength) {  
   return (T[]) copyOf(original, newLength, original.getClass());  
}

 

很明显调用了另一个copyof方法,该方法有三个参数,最后一个参数指明要转换的数据的类型,其源码如下:

 

public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {  
   T[] copy = ((Object)newType == (Object)Object[].class)  
       ? (T[]) new Object[newLength]  
       : (T[]) Array.newInstance(newType.getComponentType(), newLength);  
   System.arraycopy(original, 0, copy, 0,  
                    Math.min(original.length, newLength));  
   return copy;  
}

 

这里可以很明显地看出,该方法实际上是在其内部又创建了一个长度为newlength的数组,调用System.arraycopy()方法,将原来数组中的元素复制到了新的数组中。

下面来看System.arraycopy()方法。该方法被标记了native,调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。

4、注意ArrayList的两个转化为静态数组的toArray方法。

第一个,Object[] toArray()方法。该方法有可能会抛出java.lang.ClassCastException异常,如果直接用向下转型的方法,将整个ArrayList集合转变为指定类型的Array数组,便会抛出该异常,而如果转化为Array数组时不向下转型,而是将每个元素向下转型,则不会抛出该异常,显然对数组中的元素一个个进行向下转型,效率不高,且不太方便。

第二个,<T> T[] toArray(T[] a)方法。该方法可以直接将ArrayList转换得到的Array进行整体向下转型(转型其实是在该方法的源码中实现的),且从该方法的源码中可以看出,参数a的大小不足时,内部会调用Arrays.copyOf方法,该方法内部创建一个新的数组返回,因此对该方法的常用形式如下:

public static Integer[] vectorToArray2(ArrayList<Integer> v) {    
   Integer[] newText = (Integer[])v.toArray(new Integer[0]);    
   return newText;    
}

 

5、ArrayList基于数组实现,可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低。

6、在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,ArrayList中允许元素为null

posted on 2019-03-08 16:53  释迦&牟尼  阅读(111)  评论(0编辑  收藏  举报

导航