普通计算时:
N!=1*2*3*4*5*............*N;
如果要计算N!后得到的数字,则我们可以知道其等于lgN!+1
lgN!=lg1+lg2+lg3+lg4+lg5+....................+lgN;
但是当N很大的时候,我们可以通过数学公式进行优化:(即Stirling公式)
N!=sqrt(2*pi*N)*(N/e)^N;(pi=3.1415926=acos(-1.0),e=2.718)
lgN!=(lg(2*pi)+lgN)/2+N*(lgN-lge);
斯特林公式可以用来估算某数的大小结合lg可以估算某数的位数,或者可以估算某数的阶乘是另一个数的倍数。