[转]Hbase集群搭建及所有配置调优参数整理及API代码运行
最近为了方便开发,在自己的虚拟机上搭建了三节点的Hadoop集群与Hbase集群,hadoop集群的搭建与zookeeper集群这里就不再详细说明,原来的笔记中记录过。这里将hbase配置参数进行相应整理,方便日后使用。
首先vi ~/.bash_profile将hbase的环境变量进行配置,最后source ~./bash_profile使之立即生效
1、修改hbase-env.sh
由于我使用的是外置的zookeeper,所以这里HBASE_MANAGES_ZK设置为,设置参数:
1
2
3
4
5
6
7
8
|
# The java implementation to use. Java 1.7 + required. export JAVA_HOME=/usr/local/yangsy/jdk1. 7 .0_55 # Extra Java CLASSPATH elements. Optional. export HBASE_CLASSPATH=/usr/local/hbase- 1.0 . 2 /conf # Tell HBase whether it should manage it's own instance of Zookeeper or not. export HBASE_MANAGES_ZK= false |
2、修改hbase-site.xml
<configuration>
//设置将数据写入hdfs的目录 <property> <name>hbase.rootdir</name> <value>hdfs://master:9000/usr/local/hadoop-2.6.0/hbaseData</value> </property>
//设置hbase模式为集群模式 <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> //设置hbase的master端口地址 <property> <name>hbase.master</name> <value>hdfs://master:60000</value> </property> //HBase Master web界面绑定的端口,默认为0.0.0.0 <property> <name>hbase.master.info.port</name> <value>60010</value> </property> //连接zookeeper的端口设置 <property> <name>hbase.zookeeper.property.clientPort</name> <value>2183</value> </property> //设置zookeeper的连接地址(必须为基数个) <property> <name>hbase.zookeeper.quorum</name> <value>master,slave1,slave2</value> </property> //Zookeeper的zoo.conf中的路径配置,快照的存储位置 <property> <name>hbase.zookeeper.property.dataDir</name> <value>/usr/local/zookeeper-3.4.6/data</value> </property> //Zookeeper连接超时时间 <property> <name>zookeeper.session.timeout</name> <value>60000</value> </property> </configuration>
这里要注意的是,如果选择外置的zookeeper集群,则需要将zookeeper的zoo.cfg拷贝至HBase的conf下。在启动HBase时,将会自动加载该配置文件。同时,如果hadoop为ha集群的话,需要将core-site.xml以及hdfs-site.xml拷贝到hbase的conf下,否则启动后regionServer会报unknownhost.
3、修改regionservers
slave1 slave2
4、启动hadoop集群、zookeeper集群以及Hbase
首先要确保zkeeper是否正常启动 在zookeeper bin目录下使用./zkServer.sh status查看状态
5、查看HBase master启动是否报错
6、查看各slave节点reginserver是否报错
6、看来启动成功,可以后续愉快的玩耍了
最后查阅了Hbase相关配置参数,这里进行总结,以便日后熟练后调优
hbase.rootdir
这个目录是region server的共享目录,用来持久化Hbase。URL需要是'完全正确'的,还要包含文件系统的scheme。例如,要表示hdfs中的 '/hbase'目录,namenode 运行在namenode.example.org的9090端口。则需要设置为hdfs://namenode.example.org:9000 /hbase。默认情况下Hbase是写到/tmp的。不改这个配置,数据会在重启的时候丢失。
默认: file:///tmp/hbase-${user.name}/hbase
hbase.master.port
Hbase的Master的端口.
默认: 60000
hbase.cluster.distributed
Hbase的运行模式。false是单机模式,true是分布式模式。若为false,Hbase和Zookeeper会运行在同一个JVM里面。
默认: false
hbase.tmp.dir
本地文件系统的临时文件夹。可以修改到一个更为持久的目录上。(/tmp会在重启时清楚)
默认: /tmp/hbase-${user.name}
hbase.master.info.port
HBase Master web 界面端口. 设置为-1 意味着你不想让他运行。
默认: 60010
hbase.master.info.bindAddress
HBase Master web 界面绑定的端口
默认: 0.0.0.0
hbase.client.write.buffer
HTable 客户端的写缓冲的默认大小。这个值越大,需要消耗的内存越大。因为缓冲在客户端和服务端都有实例,所以需要消耗客户端和服务端两个地方的内存。得到的好处 是,可以减少RPC的次数。可以这样估算服务器端被占用的内存: hbase.client.write.buffer * hbase.regionserver.handler.count
默认: 2097152
hbase.regionserver.port
HBase RegionServer绑定的端口
默认: 60020
hbase.regionserver.info.port
HBase RegionServer web 界面绑定的端口 设置为 -1 意味这你不想与运行 RegionServer 界面.
默认: 60030
hbase.regionserver.info.port.auto
Master或RegionServer是否要动态搜一个可以用的端口来绑定界面。当hbase.regionserver.info.port已经被占用的时候,可以搜一个空闲的端口绑定。这个功能在测试的时候很有用。默认关闭。
默认: false
hbase.regionserver.info.bindAddress
HBase RegionServer web 界面的IP地址
默认: 0.0.0.0
hbase.regionserver.class
RegionServer 使用的接口。客户端打开代理来连接region server的时候会使用到。
默认: org.apache.hadoop.hbase.ipc.HRegionInterface
hbase.client.pause
通常的客户端暂停时间。最多的用法是客户端在重试前的等待时间。比如失败的get操作和region查询操作等都很可能用到。
默认: 1000
hbase.client.retries.number
最大重试次数。例如 region查询,Get操作,Update操作等等都可能发生错误,需要重试。这是最大重试错误的值。
默认: 10
hbase.client.scanner.caching
当 调用Scanner的next方法,而值又不在缓存里的时候,从服务端一次获取的行数。越大的值意味着Scanner会快一些,但是会占用更多的内存。当 缓冲被占满的时候,next方法调用会越来越慢。慢到一定程度,可能会导致超时。例如超过了 hbase.regionserver.lease.period。
默认: 1
hbase.client.keyvalue.maxsize
一 个KeyValue实例的最大size.这个是用来设置存储文件中的单个entry的大小上界。因为一个KeyValue是不能分割的,所以可以避免因为 数据过大导致region不可分割。明智的做法是把它设为可以被最大region size整除的数。如果设置为0或者更小,就会禁用这个检查。默认10MB。
默认: 10485760
hbase.regionserver.lease.period
客户端租用HRegion server 期限,即超时阀值。单位是毫秒。默认情况下,客户端必须在这个时间内发一条信息,否则视为死掉。
默认: 60000
hbase.regionserver.handler.count
RegionServers受理的RPC Server实例数量。对于Master来说,这个属性是Master受理的handler数量
默认: 10
hbase.regionserver.msginterval
RegionServer 发消息给 Master 时间间隔,单位是毫秒
默认: 3000
hbase.regionserver.optionallogflushinterval
将Hlog同步到HDFS的间隔。如果Hlog没有积累到一定的数量,到了时间,也会触发同步。默认是1秒,单位毫秒。
默认: 1000
hbase.regionserver.regionSplitLimit
region的数量到了这个值后就不会在分裂了。这不是一个region数量的硬性限制。但是起到了一定指导性的作用,到了这个值就该停止分裂了。默认是MAX_INT.就是说不阻止分裂。
默认: 2147483647
hbase.regionserver.logroll.period
提交commit log的间隔,不管有没有写足够的值。
默认: 3600000
hbase.regionserver.hlog.reader.impl
HLog file reader 的实现.
默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogReader
hbase.regionserver.hlog.writer.impl
HLog file writer 的实现.
默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogWriter
hbase.regionserver.thread.splitcompactcheckfrequency
region server 多久执行一次split/compaction 检查.
默认: 20000
hbase.regionserver.nbreservationblocks
储备的内存block的数量(译者注:就像石油储备一样)。当发生out of memory 异常的时候,我们可以用这些内存在RegionServer停止之前做清理操作。
默认: 4
hbase.zookeeper.dns.interface
当使用DNS的时候,Zookeeper用来上报的IP地址的网络接口名字。
默认: default
hbase.zookeeper.dns.nameserver
当使用DNS的时候,Zookeepr使用的DNS的域名或者IP 地址,Zookeeper用它来确定和master用来进行通讯的域名.
默认: default
hbase.regionserver.dns.interface
当使用DNS的时候,RegionServer用来上报的IP地址的网络接口名字。
默认: default
hbase.regionserver.dns.nameserver
当使用DNS的时候,RegionServer使用的DNS的域名或者IP 地址,RegionServer用它来确定和master用来进行通讯的域名.
默认: default
hbase.master.dns.interface
当使用DNS的时候,Master用来上报的IP地址的网络接口名字。
默认: default
hbase.master.dns.nameserver
当使用DNS的时候,RegionServer使用的DNS的域名或者IP 地址,Master用它来确定用来进行通讯的域名.
默认: default
hbase.balancer.period
Master执行region balancer的间隔。
默认: 300000
hbase.regions.slop
当任一regionserver有average + (average * slop)个region是会执行Rebalance
默认: 0
hbase.master.logcleaner.ttl
Hlog存在于.oldlogdir 文件夹的最长时间, 超过了就会被 Master 的线程清理掉.
默认: 600000
hbase.master.logcleaner.plugins
LogsCleaner 服务会执行的一组LogCleanerDelegat。值用逗号间隔的文本表示。这些WAL/HLog cleaners会按顺序调用。可以把先调用的放在前面。你可以实现自己的LogCleanerDelegat,加到Classpath下,然后在这里写 下类的全称。一般都是加在默认值的前面。
默认: org.apache.hadoop.hbase.master.TimeToLiveLogCleaner
hbase.regionserver.global.memstore.upperLimit
单个region server的全部memtores的最大值。超过这个值,一个新的update操作会被挂起,强制执行flush操作。
默认: 0.4
hbase.regionserver.global.memstore.lowerLimit
当强制执行flush操作的时候,当低于这个值的时候,flush会停止。默认是堆大小的 35% . 如果这个值和 hbase.regionserver.global.memstore.upperLimit 相同就意味着当update操作因为内存限制被挂起时,会尽量少的执行flush(译者注:一旦执行flush,值就会比下限要低,不再执行)
默认: 0.35
hbase.server.thread.wakefrequency
service工作的sleep间隔,单位毫秒。 可以作为service线程的sleep间隔,比如log roller.
默认: 10000
hbase.hregion.memstore.flush.size
当memstore的大小超过这个值的时候,会flush到磁盘。这个值被一个线程每隔hbase.server.thread.wakefrequency检查一下。
默认: 67108864
hbase.hregion.preclose.flush.size
当一个region中的memstore的大小大于这个值的时候,我们又触发了close.会先运行“pre-flush”操作,清理这个需要关闭的 memstore,然后将这个region下线。当一个region下线了,我们无法再进行任何写操作。如果一个memstore很大的时候,flush 操作会消耗很多时间。"pre-flush"操作意味着在region下线之前,会先把memstore清空。这样在最终执行close操作的时 候,flush操作会很快。
默认: 5242880
hbase.hregion.memstore.block.multiplier
如果memstore有hbase.hregion.memstore.block.multiplier倍数的 hbase.hregion.flush.size的大小,就会阻塞update操作。这是为了预防在update高峰期会导致的失控。如果不设上 界,flush的时候会花很长的时间来合并或者分割,最坏的情况就是引发out of memory异常。(译者注:内存操作的速度和磁盘不匹配,需要等一等。原文似乎有误)
默认: 2
hbase.hregion.memstore.mslab.enabled
体验特性:启用memStore分配本地缓冲区。这个特性是为了防止在大量写负载的时候堆的碎片过多。这可以减少GC操作的频率。(GC有可能会Stop the world)(译者注:实现的原理相当于预分配内存,而不是每一个值都要从堆里分配)
默认: false
hbase.hregion.max.filesize
最大HStoreFile大小。若某个Column families的HStoreFile增长达到这个值,这个Hegion会被切割成两个。 Default: 256M.
默认: 268435456
hbase.hstore.compactionThreshold
当一个HStore含有多于这个值的HStoreFiles(每一个memstore flush产生一个HStoreFile)的时候,会执行一个合并操作,把这HStoreFiles写成一个。这个值越大,需要合并的时间就越长。
默认: 3
hbase.hstore.blockingStoreFiles
当一个HStore含有多于这个值的HStoreFiles(每一个memstore flush产生一个HStoreFile)的时候,会执行一个合并操作,update会阻塞直到合并完成,直到超过了hbase.hstore.blockingWaitTime的值
默认: 7
hbase.hstore.blockingWaitTime
hbase.hstore.blockingStoreFiles所限制的StoreFile数量会导致update阻塞,这个时间是来限制阻塞时间的。当超过了这个时间,HRegion会停止阻塞update操作,不过合并还有没有完成。默认为90s.
默认: 90000
hbase.hstore.compaction.max
每个“小”合并的HStoreFiles最大数量。
默认: 10
hbase.hregion.majorcompaction
一个Region中的所有HStoreFile的major compactions的时间间隔。默认是1天。 设置为0就是禁用这个功能。
默认: 86400000
hbase.mapreduce.hfileoutputformat.blocksize
MapReduce 中HFileOutputFormat可以写 storefiles/hfiles. 这个值是hfile的blocksize的最小值。通常在Hbase写Hfile的时候,bloocksize是由table schema(HColumnDescriptor)决定的,但是在mapreduce写的时候,我们无法获取schema中blocksize。这个值 越小,你的索引就越大,你随机访问需要获取的数据就越小。如果你的cell都很小,而且你需要更快的随机访问,可以把这个值调低。
默认: 65536
hfile.block.cache.size
分配给HFile/StoreFile的block cache占最大堆(-Xmx setting)的比例。默认是20%,设置为0就是不分配。
默认: 0.2
hbase.hash.type
哈希函数使用的哈希算法。可以选择两个值:: murmur (MurmurHash) 和 jenkins (JenkinsHash). 这个哈希是给 bloom filters用的.
默认: murmur
hbase.master.keytab.file
HMaster server验证登录使用的kerberos keytab 文件路径。(译者注:Hbase使用Kerberos实现安全)
默认:
hbase.master.kerberos.principal
例如. "hbase/_HOST@EXAMPLE.COM". HMaster运行需要使用 kerberos principal name. principal name 可以在: user/hostname@DOMAIN 中获取. 如果 "_HOST" 被用做hostname portion,需要使用实际运行的hostname来替代它。
默认:
hbase.regionserver.keytab.file
HRegionServer验证登录使用的kerberos keytab 文件路径。
默认:
hbase.regionserver.kerberos.principal
例如. "hbase/_HOST@EXAMPLE.COM". HRegionServer运行需要使用 kerberos principal name. principal name 可以在: user/hostname@DOMAIN 中获取. 如果 "_HOST" 被用做hostname portion,需要使用实际运行的hostname来替代它。在这个文件中必须要有一个entry来描述 hbase.regionserver.keytab.file
默认:
zookeeper.session.timeout
ZooKeeper 会话超时.Hbase把这个值传递改zk集群,向他推荐一个会话的最大超时时间。详见http://hadoop.apache.org /zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions "The client sends a requested timeout, the server responds with the timeout that it can give the client. "。 单位是毫秒
默认: 180000
zookeeper.znode.parent
ZooKeeper中的Hbase的根ZNode。所有的Hbase的ZooKeeper会用这个目录配置相对路径。默认情况下,所有的Hbase的ZooKeeper文件路径是用相对路径,所以他们会都去这个目录下面。
默认: /hbase
zookeeper.znode.rootserver
ZNode 保存的 根region的路径. 这个值是由Master来写,client和regionserver 来读的。如果设为一个相对地址,父目录就是 ${zookeeper.znode.parent}.默认情形下,意味着根region的路径存储在/hbase/root-region- server.
默认: root-region-server
hbase.zookeeper.quorum
Zookeeper 集群的地址列表,用逗号分割。例 如:"host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".默认是 localhost,是给伪分布式用的。要修改才能在完全分布式的情况下使用。如果在hbase-env.sh设置了HBASE_MANAGES_ZK, 这些ZooKeeper节点就会和Hbase一起启动。
默认: localhost
hbase.zookeeper.peerport
ZooKeeper节点使用的端口。详细参见:http://hadoop.apache.org/zookeep ... ReplicatedZooKeeper
默认: 2888
hbase.zookeeper.leaderport
ZooKeeper用来选择Leader的端口,详细参见:http://hadoop.apache.org/zookeep ... ReplicatedZooKeeper
默认: 3888
hbase.zookeeper.property.initLimit
ZooKeeper的zoo.conf中的配置。 初始化synchronization阶段的ticks数量限制
默认: 10
hbase.zookeeper.property.syncLimit
ZooKeeper的zoo.conf中的配置。 发送一个请求到获得承认之间的ticks的数量限制
默认: 5
hbase.zookeeper.property.dataDir
ZooKeeper的zoo.conf中的配置。 快照的存储位置
默认: ${hbase.tmp.dir}/zookeeper
hbase.zookeeper.property.clientPort
ZooKeeper的zoo.conf中的配置。 客户端连接的端口
默认: 2181
hbase.zookeeper.property.maxClientCnxns
ZooKeeper的zoo.conf中的配置。 ZooKeeper集群中的单个节点接受的单个Client(以IP区分)的请求的并发数。这个值可以调高一点,防止在单机和伪分布式模式中出问题。
默认: 2000
hbase.rest.port
HBase REST server的端口
默认: 8080
hbase.rest.readonly
定义REST server的运行模式。可以设置成如下的值: false: 所有的HTTP请求都是被允许的 - GET/PUT/POST/DELETE. true:只有GET请求是被允许的
默认: false
HBase API代码运行
随着搭好的集群进行各种测试。。。练习下HBase API
package HbaseTest; import akka.io.Tcp; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.*; import org.apache.hadoop.hbase.client.*; import java.util.ArrayList; import java.util.List; /** * Created by root on 5/30/16. */ public class HbaseTest { private Configuration conf; public void init(){ conf = HBaseConfiguration.create(); } public void createTable(){ Connection conn = null; try{ conn = ConnectionFactory.createConnection(conf); HBaseAdmin hadmin = (HBaseAdmin)conn.getAdmin(); HTableDescriptor desc = new HTableDescriptor("TableName".valueOf("yangsy")); desc.addFamily(new HColumnDescriptor("f1")); if(hadmin.tableExists("yangsy")){ System.out.println("table is exists!"); System.exit(0); }else{ hadmin.createTable(desc); System.out.println("create table success"); } }catch (Exception e){ e.printStackTrace(); }finally { { if(null != conn){ try{ conn.close(); }catch(Exception e){ e.printStackTrace(); } } } } } public void query(){ Connection conn = null; HTable table = null; ResultScanner scan = null; try{ conn = ConnectionFactory.createConnection(conf); table = (HTable)conn.getTable(TableName.valueOf("yangsy")); scan = table.getScanner(new Scan()); for(Result rs : scan){ System.out.println("rowkey:" + new String(rs.getRow())); for(Cell cell : rs.rawCells()){ System.out.println("column:" + new String(CellUtil.cloneFamily(cell))); System.out.println("columnQualifier:"+new String(CellUtil.cloneQualifier(cell))); System.out.println("columnValue:" + new String(CellUtil.cloneValue(cell))); System.out.println("----------------------------"); } } }catch(Exception e){ e.printStackTrace(); }finally{ try { table.close(); if(null != conn) { conn.close(); } }catch (Exception e){ e.printStackTrace(); } } } public void queryByRowKey(){ Connection conn = null; ResultScanner scann = null; HTable table = null; try { conn = ConnectionFactory.createConnection(conf); table = (HTable)conn.getTable(TableName.valueOf("yangsy")); Result rs = table.get(new Get("1445320222118".getBytes())); System.out.println("yangsy the value of rokey:1445320222118"); for(Cell cell : rs.rawCells()){ System.out.println("family" + new String(CellUtil.cloneFamily(cell))); System.out.println("value:"+new String(CellUtil.cloneValue(cell))); } }catch (Exception e){ e.printStackTrace(); }finally{ if(null != table){ try{ table.close(); }catch (Exception e){ e.printStackTrace(); } } } } public void insertData(){ Connection conn = null; HTable hTable = null; try{ conn = ConnectionFactory.createConnection(conf); hTable = (HTable)conn.getTable(TableName.valueOf("yangsy")); Put put1 = new Put(String.valueOf("1445320222118").getBytes()); put1.addColumn("f1".getBytes(),"Column_1".getBytes(),"123".getBytes()); put1.addColumn("f1".getBytes(),"Column_2".getBytes(),"456".getBytes()); put1.addColumn("f1".getBytes(),"Column_3".getBytes(),"789".getBytes()); Put put2 = new Put(String.valueOf("1445320222119").getBytes()); put2.addColumn("f1".getBytes(),"Column_1".getBytes(),"321".getBytes()); put2.addColumn("f1".getBytes(),"Column_2".getBytes(),"654".getBytes()); put2.addColumn("f1".getBytes(),"Column_3".getBytes(),"987".getBytes()); List<Put> puts = new ArrayList<Put>(); puts.add(put1); puts.add(put2); hTable.put(puts); }catch(Exception e){ e.printStackTrace(); }finally{ try { if (null != hTable) { hTable.close(); } }catch(Exception e){ e.printStackTrace(); } } } public static void main(String args[]){ HbaseTest test = new HbaseTest(); test.init(); test.createTable(); test.insertData(); test.query(); } }
-------------------------------------------
个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!
如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,在此感谢!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用