c++基本数据结构

基本数据结构:

一.线性表

1.顺序结构

 线性表可以用普通的一维数组存储。

 你可以让线性表可以完成以下操作(代码实现很简单,这里不再赘述):

  1. 返回元素个数。
  2. 判断线性表是否为空。
  3. 得到位置为p的元素。
  4. 查找某个元素。
  5. 插入、删除某个元素:务必谨慎使用,因为它们涉及大量元素的移动。

2.链式结构

(1) 单链表:

1.定义:下面有一个空链表,表头叫head,并且表内没有任何元素。

struct node
{
    int value;
    node *next;
} arr[MAX];
int top=-1;
node *head = NULL;

2.内存分配:在竞赛中不要用new,也不要用malloc、calloc——像下面一样做吧。

#define NEW(p)        p=&arr[++top];p->value=0;p->next=NULL
node *p;
NEW(head);                            // 初始化表头
NEW(p);                                // 新建结点

3.插入:把q插入到p的后面。时间复杂度O(1)。

if (p!=NULL && q!=NULL)                // 先判定是否为空指针。如果不是,继续。
{
    q->next=p->next;
    p->next=q;
}

4.删除:把p的下一元素删除。时间复杂度O(1)。

if (p!=NULL && p->next!=NULL)        // 先判定是否为空指针。如果不是,继续。
{
    node *q=p->next;
    p->next=q->next;
    // delete(q);                        // 如果使用动态内存分配,最好将它的空间释放。
}

5.查找或遍历:时间复杂度O(n)。

node *p=first;
while (p!=NULL)
{
    // 处理value
    // cout<<p->value<<'\t';
    p=p->next;
}

 

(2) 静态链表

指针的作用就是存储地址。如果我们找到了替代品,就可以放弃指针了。

需要把上面的定义改一下:

struct node
{
    int value;
    int next;            // 表示下一元素在arr中的下标
} arr[MAX];

(3) 循环链表

和单链表有一个重大区别:单链表最后一个元素的next指向NULL,而循环链表最后一个元素的next指向first。

遍历时要留心,不要让程序陷入死循环。

一个小技巧:如果维护一个表尾指针last,那么就可以在O(1)的时间内查找最后一个元素。同时可以防止遍历时陷入死循环。

(4) 双链表

1.定义:下面有一个空链表,表头叫first。

struct node
{
    int value;
    node *next, *prev;
} arr[MAX];
int top=-1;
node *first = NULL;    // 根据实际需要可以维护一个表尾指针last。

2.内存分配:最好不要使用new运算符或malloc、calloc函数。

#define NEW(p)        p=arr+(++top);p->value=0;p->next=NULL;p->prev=NULL
node *p;
NEW(head);                            // 初始化表头
NEW(p);                                // 新建结点

3.插入:把q插入到p的后面。时间复杂度O(1)。

if (p==NULL||q==NULL)                 // 先判定是否为空指针。如果不是,继续。
{
    q->prev=p;
    q->next=p->next;
    q->next->prev=q;
    p->next=q;
}

4.删除:把p的下一元素删除。时间复杂度O(1)。

if (p==NULL||p->next==NULL)        // 先判定是否为空指针。如果不是,继续。
{
    node *q=p->next;
    p->next=q->next;
    q->next->prev=p;
    // delete(q);                        // 如果使用动态内存分配,最好将它的空间释放。
}

5.查找或遍历:从两个方向开始都是可以的。

(5) 将元素插入到有序链表中*

void insert(const node *head, node *p)
{
    node *x, *y;
    y=head;
    do
    {
        x=y;
        y=x->next;
    } while ((y!=NULL) && (y->value < p->value);
    x->next=p;
    p->next=y;
}

二.栈

 (1) 栈的实现!

 

操作规则:先进后出,先出后进。

int stack[N], top=0; // top表示栈顶位置。

入栈inline void push(int a) { stack[top++]=a; }

出栈inline int pop() { return stack[--top];

栈空的条件inline bool empty() { return top<0; }  

  如果两个栈有相反的需求,可以用这种方法节省空间:用一个数组表示两个栈。分别用top1top2表示栈顶的位置,令top10开始,top2N-1开始。

 

(2) DFS和栈

 

  递归其实也用到了栈。每调用一次函数,都相当于入栈(当然这步操作“隐藏在幕后”)。函数调用完成,相当于出栈。

 

  一般情况下,调用栈的空间大小为16MB。也就是说,如果递归次数太多,很容易因为栈溢出导致程序崩溃,即“爆栈”。

 

  为了防止“爆栈”,可以将递归用栈显式实现。如果可行,也可以改成迭代、递推等方法。

 

  使用栈模拟递归时,注意入栈的顺序——逆序入栈,后递归的要先入栈,先递归的要后入栈。

 

  下面是非递归版本的DFS模板:

 

stack <int> s;                                // 存储状态
void DFS(int v, …)
{
    s.push(v);                                // 初始状态入栈
    while (!s.empty())
    {
        int x = s.top(); s.pop();        // 获取状态
        
        // 处理结点
        if (x达到某种条件)
        {
            // 输出、解的数量加1、更新目前搜索到的最优值等
return;
        }

        // 寻找下一状态。当然,不是所有的搜索都要这样寻找状态。
        // 注意,这里寻找状态的顺序要与递归版本的顺序相反,即逆序入栈。
        for (i=n-1;i>=0;i--)
        {
            s.push(… /*i对应的状态*/);
        }
    }

    // 无解
    cout<<"No Solution.";
}

 

 

 

 

 


三.队列

(1) 顺序队列

操作规则:先进先出,后进后出。

定义:int queue[N], front=0, rear=0;

front指向队列首个元素,rear指向队列尾部元素的右侧。

入队:inline void push(int a) { queue[rear++]=a; }

出队:inline int pop() { return queue[front++]; }

队空的条件:inline bool empty() { return front==rear; }

(2) 循环队列

循环队列——把链状的队列变成了一个环状队列。与上面的链状队列相比,可以节省很大空间。

定义:int queue[N], front=0, rear=0;
front指向队列首个元素,rear指向队列尾部元素的右侧。

入队:inline void push(int a) { queue[rear]=a; rear=(rear+1)%N; }

出队:inline int pop() { int t=queue[front]; front=(front+1)%N; return t; }

队满或队空的条件:inline bool empty() { return front==rear; }
队满和队空都符合上述条件。怎么把它们区分开呢?
第一种方法:令队列的大小是N+1,然后只使用N个元素。这样队满和队空的条件就不一样了。
第二种方法:在入队和出队同时记录队列元素个数。这样,直接检查元素个数就能知道队列是空还是满。

(3) BFS和队列

BFS要借助队列来完成,并且,将队列改成堆栈,BFS就变成了DFS。BFS的具体实现见42页“3.7 代码模板”。


四.二叉树

(1) 二叉树的链表存储法

struct node
{
    int value;
    node *leftchild, *rightchild;
    //int id;                // 结点编号。
    //node *parent;        // 指向父亲结点。
} arr[N];
int top=-1;
node * head = NULL;
#define NEW(p)  p=&arr[++top]; p->leftchild=NULL;        \
                        p->rightchild=NULL; p->value=0

 

 

(2) 完全二叉树的一维数组存储法

 

 

 

  如果一个二叉树的结点严格按照从上到下、从左到右的顺序填充,就可以用一个一维数组保存。

下面假设这个树有n个结点,待操作的结点是r(0≤rn)。

操作

宏定义

r的取值范围

r的父亲

#define parent(r)          (((r)-1)/2)

r≠0

r的左儿子

#define leftchild(r)       ((r)*2+1)

2r+1<n

r的右儿子

#define rightchild(r)      ((r)*2+2)

2r+2<n

r的左兄弟

#define leftsibling(r)     ((r)-1)

r为偶数且0<rn-1

r的右兄弟

#define rightsibling(r)    ((r)+1)

r为奇数且r+1<n

判断r是否为叶子

#define isleaf(r)          ((r)>=n/2)

rn

(3) 二叉树的遍历

 

1. 前序遍历

 

void preorder(node *p)
{
    if (p==NULL) return;

    // 处理结点p
    cout<<p->value<<' ';
    
    preorder(p->leftchild);
    preorder(p->rightchild);
}

 

2. 中序遍历

void inorder(node *p)
{
    if (p==NULL) return;

    inorder(p->leftchild);

    // 处理结点p
    cout<<p->value<<' ';
    
    inorder(p->rightchild);
}

3. 后序遍历

 

void postorder(node *p)
{
    if (p==NULL) return;

    postorder(p->leftchild);
    postorder(p->rightchild);

    // 处理结点p
    cout<<p->value<<' ';
}

 

假如二叉树是通过动态内存分配建立起来的,在释放内存空间时应该使用后序遍历。

 

4. 宽度优先遍历(BFS

 

首先访问根结点,然后逐个访问第一层的结点,接下来逐个访问第二层的结点……

 

 

node *q[N];
void BFS(node *p)
{
    if (p==NULL) return;
    
    int front=1,rear=2;
    q[1]=p;
    while (front<rear)
    {
        node *t = q[front++];
        // 处理结点t
        cout<<t->value<<' ';
        
        if (t->leftchild!=NULL) q[rear++]=t->leftchild;
        if (t->rightchild!=NULL) q[rear++]=t->rightchild;
    }
}

对于完全二叉树,可以直接遍历:

for (int i=0; i<n; i++) cout<<a[i]<<' ';

(4) 二叉树重建

 

【问题描述】二叉树的遍历方式有三种:前序遍历、中序遍历和后序遍历。现在给出其中两种遍历的结果,请输出第三种遍历的结果。

 

 

 

【分析】

 

前序遍历的第一个元素是根,后序遍历的最后一个元素也是根。所以处理时需要到中序遍历中找根,然后递归求出树。

 

注意!输出之前须保证字符串的最后一个字符是'\0'

 

1. 中序+后序→前序

void preorder(int n, char *pre, char *in, char *post)
{
    if (n<=0) return;
    int p=strchr(in, post[n-1])-in;
    pre[0]=post[n-1];
    preorder(p, pre+1, in, post);
    preorder(n-p-1, pre+p+1, in+p+1, post+p);
}

2. 前序中序后序

 

void postorder(int n, char *pre, char *in, char *post)
{
    if (n<=0) return;
    int p=strchr(in, pre[0])-in;
    postorder(p, pre+1, in, post);
    postorder(n-p-1, pre+p+1, in+p+1, post+p);
    post[n-1]=pre[0];
}

 

3. 前序+后序→中序

“中+前”和“中+后”都能产生唯一解,但是“前+后”有多组解。下面输出其中一种。

bool check(int n, char *pre, char *post)        // 判断pre、post是否属于同一棵二叉树
{
    bool b;

    for (int i=0; i<n; i++)
    {
        b=false;
        for (int j=0; j<n; j++)
            if (pre[i]==post[j])
            {
                b=true;
                break;
            }
        if (!b) return false;
    }
    return true;
}

void inorder(int n, char *pre, char *in, char *post)
{
    if (n<=0) return;
    int p=1;
    while (check(p, pre+1, post)==false && p<n)
        p++;

    if (p>=n) p=n-1;                // 此时,如果再往inorder里传p,pre已经不含有效字符了。
    inorder(p, pre+1, in, post);
    in[p]=pre[0];
    inorder(n-p-1, pre+p+1, in+p+1, post+p);
}

(5) 求二叉树的直径*

从任意一点出发,搜索距离它最远的点,则这个最远点必定在树的直径上。再搜索这个最远点的最远点,这两个最远点的距离即为二叉树的直径。

求树、图(连通图)的直径的思想是相同的。

 

// 结点编号从1开始,共n个结点。
struct node
{
    int v;
    node *parent, *leftchild, *rightchild;
} a[1001], *p;
int maxd;
bool T[1003];
#define t(x) T[((x)==NULL)?0:((x)-a+1)]
node *p;
void DFS(node * x, int l)
{
    if (l>maxd) maxd=l, p=x;
    if (x==NULL) return;
    t(x)=false;
    if (t(x->parent)) DFS(x->parent, l+1);
    if (t(x->leftchild)) DFS(x->leftchild, l+1);
    if (t(x->rightchild)) DFS(x->rightchild, l+1);
}

int distance(node *tree)            // tree已经事先读好
{
    maxd=0;
    memset(T, 0, sizeof(T));
    for (int i=1; i<=n; i++)
        T[i]=true;
    DFS(tree,0);

    maxd=0;
    memset(T, 0, sizeof(T));
    for (int i=1; i<=n; i++) T[i]=true;
    DFS(p,0);

    return maxd;
}

 


五.并查集

并查集最擅长做的事情——将两个元素合并到同一集合、判断两个元素是否在同一集合中。

并查集用到了树的父结点表示法。在并查集中,每个元素都保存自己的父亲结点的编号,如果自己就是根结点,那么父亲结点就是自己。这样就可以用树形结构把在同一集合的点连接到一起了。

并查集的实现:

struct node
{
    int parent;                        // 表示父亲结点。当编号i==parent时为根结点。
    int count;                            // 当且仅当为根结点时有意义:表示自己及子树元素的个数
    int value;                            // 结点的值
} set[N];

int Find(int x)                            // 查找算法的递归版本(建议不用这个)
{
    return (set[x].parent==x) ? x : (set[x].parent = Find(set[x].parent));
}

int Find(int x)                             // 查找算法的非递归版本
{
    int y=x;
    while (set[y].parent != y)            // 寻找父亲结点
        y = set[y].parent;
    
    while (x!=y)                            // 路径压缩,即把途中经过的结点的父亲全部改成y。
    {
        int temp = set[x].parent;
        set[x].parent = y;
        x = temp;
    }
    return y;
}

void Union(int x, int y)                // 小写的union是关键字。
{
    x=Find(x); y=Find(y);                // 寻找各自的根结点
    if (x==y) return;                    // 如果不在同一个集合,合并
    
    if (set[x].count > set[y].count)    // 启发式合并,使树的高度尽量小一些
    {
        set[y].parent = x;
        set[x].count += set[y].count;
    }
    else
    {
        set[x].parent = y;
        set[y].count += set[x].count;
    }
}

void Init(int cnt)                        // 初始化并查集,cnt是元素个数
{
    for (int i=1; i<=cnt; i++)
    {
        set[i].parent=i;
        set[i].count=1;
        set[i].value=0;
    }
}

void compress(int cnt)                    // 合并结束,再进行一次路径压缩
{
    for (int i=1; i<=cnt; i++) Find(i);
}

说明

使用之前调用Init()!

Union(x,y):把xy进行启发式合并,即让节点数比较多的那棵树作为“树根”,以降低层次。

Find(x):寻找x所在树的根结点。Find的时候,顺便进行了路径压缩。
上面的Find有两个版本,一个是递归的,另一个是非递归的。

判断xy是否在同一集合:if (Find(x)==Find(y)) ……

在所有的合并操作结束后,应该执行compress()。

并查集的效率很高,执行m次查找的时间约为O(5m)。


六.总结

数据结构是计算机科学的重要分支。选择合适的数据结构,可以简化问题,减少时间的浪费。

1. 线性表

线性表有两种存储方式,一种是顺序存储,另一种是链式存储。前者只需用一维数组实现,而后者既可以用数组实现,又可以用指针实现。

顺序表的特点是占用空间较小,查找和定位的速度很快,但是插入和删除元素的速度很慢(在尾部速度快);链表和顺序表正好相反,它的元素插入和删除速度很快,但是查找和定位的速度很慢(同样,在首尾速度快)。

 

2. 栈和队列

栈和队列以线性表为基础。它们的共同点是添加、删除元素都有固定顺序,不同点是删除元素的顺序。队列从表头删除元素,而栈从表尾删除元素,所以说队列是先进先出表,堆栈是先进后出表。

栈和队列在搜索中有非常重要的应用。栈可以用来模拟深度优先搜索,而广度优先搜索必须用队列实现。

有时为了节省空间,栈的两头都会被利用,而队列会被改造成循环队列。

 

3. 二叉树

上面几种数据结构都是线性结构。而二叉树是一种很有用的非线性结构。二叉树可以采用以下的递归定义:二叉树要么为空,要么由根结点、左子树和右子树组成。左子树和右子树分别是一棵二叉树。

计算机中的树和现实生活不同——计算机里的树是倒置的,根在上,叶子在下。

完全二叉树:一个完全二叉树的结点是从上到下、从左到右地填充的。如果高度为h,那么0~h-1层一定已经填满,而第h层一定是从左到右连续填充的。

通常情况下,二叉树用指针实现。对于完全二叉树,可以用一维数组实现(事先从0开始编号)。

访问二叉树的所有结点的过程叫做二叉树的遍历。常用的遍历方式有前序遍历、中序遍历、后序遍历,它们都是递归完成的。

 

4.

树也可以采用递归定义:树要么为空,要么由根结点和nn≥0)棵子树组成。

森林由mm≥0)棵树组成。

二叉树不是树的一种,因为二叉树的子树中有严格的左右之分,而树没有。这样,树可以用父结点表示法来表示(当然,森林也可以)。并查集的合并、查询速度很快,它就是用父结点表示法实现的。

不过父结点表示法的遍历比较困难,所以常用“左儿子右兄弟”表示法把树转化成二叉树。

树的遍历和二叉树的遍历类似,不过不用中序遍历。它们都是递归结构,所以可以在上面实施动态规划。

树作为一种特殊的图,在图论中也有广泛应用。

 

树的表示方法有很多种。

第一种是父节点表示法,它适合并查算法,但不便遍历。

第二种是子节点表表示法。

 

 

 

第三种是“左儿子右兄弟”表示法。

 

 

 

posted @ 2023-04-14 21:59  张其勋  阅读(177)  评论(0编辑  收藏  举报