【Spark学习】Spark 1.1.0 with CDH5.2 安装部署
【时间】2014年11月18日
【平台】Centos 6.5
【工具】scp
【软件】jdk-7u67-linux-x64.rpm
spark-worker-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm
spark-core-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm
spark-history-server-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm
spark-master-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm
spark-python-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm
【步骤】
1. 准备条件
(1)集群规划
主机类型 | IP地址 | 域名 |
master | 192.168.50.10 | master.hadoop.com |
worker | 192.168.50.11 | slave1.hadoop.com |
worker | 192.168.50.12 | slave2.hadoop.com |
worker | 192.168.50.13 | slave3.hadoop.com |
(2)以root身份登录操作系统
(3)在集群中的每台主机上执行如下命令,设置主机名。
hostname *.hadoop.com
编辑文件/etc/sysconfig/network如下
HOSTNAME=*.hadoop.com
(4)修改文件/etc/hosts如下
192.168.86.10 master.hadoop.com
192.168.86.11 slave1.hadoop.com
192.168.86.12 slave2.hadoop.com
192.168.86.13 slave3.hadoop.com
执行如下命令,将hosts文件复制到集群中每台主机上
scp /etc/hosts 192.168.50.*:/etc/hosts
(5)安装jdk
rpm -ivh jdk-7u67-linux-x64.rpm
创建文件
echo -e "JAVA_HOME=/usr/java/default\nexport PATH=\$JAVA_HOME/bin:\$PATH" > /etc/profile.d/java-env.sh
. /etc/profile.d/java-env.sh
(6)安装hadoop-client
yum install hadoop-client
(7)关闭iptables
service iptables stop
chkconfig iptables off
(8)关闭selinux。修改文件/etc/selinux/config,然后重启操作系统
SELINUX=disabled
2. 安装
yum install spark-core spark-master spark-worker spark-history-server spark-python
3. 配置。将以下文件修改完毕后,用scp命令复制到集群中的所有主机上
(1)修改文件/etc/spark/conf/spark-env.sh
export STANDALONE_SPARK_MASTER_HOST= master.hadoop.com
(2)修改文件/etc/spark/conf/spark-defaults.conf
spark.master spark://master.hadoop.com:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://master.hadoop.com:8020/user/spark/eventlog
spark.yarn.historyServer.address http://master.hadoop.com:18081
spark.executor.memory 2g
spark.logConf true
(3)修改文件/etc/default/spark 必须设置此环境变量,否则,history server的WebUI上无法显示任务信息
export SPARK_HISTORY_SERVER_LOG_DIR=hdfs://master.hadoop.com:8020/user/spark/eventlog 用于history server读取任务日志
(4)复制配置文件到集群所有主机
scp /etc/spark/conf/* 192.168.50.10:/etc/spark/conf/*
(5)在HDFS上执行如下操作
sudo -u hdfs hadoop fs -mkdir /user/spark
sudo -u hdfs hadoop fs -mkdir /user/spark/applicationHistory
sudo -u hdfs hadoop fs -chown -R spark:spark /user/spark
sudo -u hdfs hadoop fs -chmod 1777 /user/spark/applicationHistory
4. 优化。向HDFS上传spark-assembly.jar文件,从而提高集群加载该依赖文件的速度;上传spark-examples.jar文件是为了提高cluster模式下加载应用程序的速度
(1)在集群中的每台主机上修改文件 /etc/spark/conf/spark-defaults.conf
spark.yarn.jar hdfs://master.hadoop.com:8020/user/spark/share/lib/spark-assembly.jar
(2)执行如下命令
sudo -u hdfs hadoop fs -mkdir -p /user/spark/share/lib
sudo -u hdfs hadoop fs -mv /user/spark/share/lib/spark-assembly-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar /user/spark/share/lib/spark-assembly.jar
sudo -u hdfs hadoop fs -put /usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar /user/spark/share/lib/spark-examples.jar
sudo -u hdfs hadoop fs -chown -R root:spark /user/spark/share/lib
5. 启动spark
(1)在集群中选择一台主机作为master,并执行如下命令
service spark-master start
service spark-history-server start
注意:history server服务可以单独部署在一台主机上
(2)在集群中的其他所有主机上执行如下命令
service spark-worker start
6. 测试。向Spark提交程序,有三种工具可用:spark-shell、pyspark、spark-submit
(1)执行如下命令,进入交互式模式,运行scala代码测试
spark-shell --driver-library-path /usr/lib/hadoop/lib/native/ --driver-class-path /usr/lib/hadoop/lib/
输入以下代码
val file = sc.textFile("hdfs://master.hadoop.com:8020/tmp/input.txt")
val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://master.hadoop.com:8020/tmp/output")
运行完毕,执行exit或者ctrl-d退出
(2)执行如下命令,进入交互式模式,运行python代码测试
pyspark --driver-library-path /usr/lib/hadoop/lib/native/ --driver-class-path /usr/lib/hadoop/lib/
运行完毕,执行exit()、quit()或者ctrl-d退出
(3)执行如下命令,使用非交互式模式执行测试代码
1)local[N]执行模式: 使用N个worker线程在本地运行Spark应用程序(其中N代表线程数,默认为1。请根据你本地主机的CPU核数而定)
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master local[N] --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ /usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar 10
2)local[*]执行模式: 使用你本地主机上所有剩余的worker线程在本地运行Spark应用程序
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master local[*] --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ /usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar 10
3)standalone client执行模式: 连接到Spark Standalone集群,driver在client运行,而executor在cluster中运行。
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master spark://master.hadoop.com:7077 --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ /usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar 10
4)standalone cluster执行模式: 连接到Spark Standalone集群,driver和executor都在cluster中运行。
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode cluster --master spark://master.hadoop.com:7077 --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ hdfs://master.hadoop.com:8020/user/spark/share/lib/spark-examples.jar 10
5)yarn-client执行模式: 连接到YARN集群,driver在client运行,而executor在cluster中运行。(需要安装部署YARN集群)
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master yarn --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ /usr/lib/spark/examples/lib/spark-examples-1.1.0-cdh5.2.0-hadoop2.5.0-cdh5.2.0.jar 10
6)yarn-cluster执行模式: 连接到YARN集群,driver和executor都在cluster中运行。(需要安装部署YARN集群)
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode cluster --master yarn --driver-library-path /usr/lib/hadoop/lib/native/ \
--driver-class-path /usr/lib/hadoop/lib/ hdfs://master.hadoop.com:8020/user/spark/share/lib/spark-examples.jar 10
注意:命令参数请依据需要而定;以上spark-submit的六种模式中,*.jar文件可以换成*.py以执行python代码;更多参数可以参考命令“spark-submit --help”
7. 停止spark
service spark-master stop
service spark-worker stop
service spark-history-server stop
8. 查看spark集群状态
(1)Standalone模式,登录http://192.168.50.10:18080
(2)Standalone模式,登录http://192.168.50.10:18081
(3)YARN模式,登录http://192.168.50.10:8088
【参考】
1)http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_ig_spark_installation.html
2)http://blog.csdn.net/book_mmicky/article/details/25714287
【扩展】
1)JavaChen's Blog Spark安装和使用 http://blog.javachen.com/2014/07/01/spark-install-and-usage/
2) China_OS's Blog Hadoop CDH5 学习 http://my.oschina.net/guol/blog?catalog=483307
3)Spark on Yarn遇到的几个问题 http://www.cnblogs.com/Scott007/p/3889959.html
4)How to Run Spark App on CDH5 http://muse.logdown.com/posts/2014/08/26/how-to-run-spark-app-on-cdh5
5)Cloudera Spark on GitHub https://github.com/cloudera/spark
6)deploy Spark Server and compute Pi from your Web Browser http://gethue.com/get-started-with-spark-deploy-spark-server-and-compute-pi-from-your-web-browser/