最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence
问题描述:
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
解题思路:
1.n^2
如何把这个问题分解成子问题呢?经过分析,发现 “求以ak(k=1, 2, 3…N)为终点的最长上升子序列的长度”是个好的子问题――这里把一个上升子序列中最右边的那个数,称为该子序列的“终点”。虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。
由上所述的子问题只和一个变量相关,就是数字的位置。因此序列中数的位置k 就是“状态”,而状态 k 对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。这个问题的状态一共有N个。状态定义出来后,转移方程就不难想了。假定MaxLen (k)表示以ak做为“终点”的最长上升子序列的长度,那么:
MaxLen (1) = 1
MaxLen (k) = Max { MaxLen (i):1<i < k 且 ai < ak且 k≠1 } + 1
这个状态转移方程的意思就是,MaxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。
实际实现的时候,可以不必编写递归函数,因为从 MaxLen(1)就能推算出MaxLen(2),有了MaxLen(1)和MaxLen(2)就能推算出MaxLen(3)……
2.nlogn
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法。
定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。
最长上升子序列nlogn算法
在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n 下面一步一步试着找出它。 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。 此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
另一个大神写的:
最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想。
最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列。
设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为:
dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i].
这样简单的复杂度为O(n^2),其实还有更好的方法。
考虑两个数a[x]和a[y],x<y且a[x]<a[y],且dp[x]=dp[y],当a[t]要选择时,到底取哪一个构成最优的呢?显然选取a[x]更有潜力,因为可能存在a[x]<a[z]<a[y],这样a[t]可以获得更优的值。在这里给我们一个启示,当dp[t]一样时,尽量选择更小的a[x].
按dp[t]=k来分类,只需保留dp[t]=k的所有a[t]中的最小值,设d[k]记录这个值,d[k]=min{a[t],dp[t]=k}。
这时注意到d的两个特点(重要):
1. d[k]在计算过程中单调不升;
2. d数组是有序的,d[1]<d[2]<..d[n]。
利用这两个性质,可以很方便的求解:
1. 设当前已求出的最长上升子序列的长度为len(初始时为1),每次读入一个新元素x:
2. 若x>d[len],则直接加入到d的末尾,且len++;(利用性质2)
否则,在d中二分查找,找到第一个比x小的数d[k],并d[k+1]=x,在这里x<=d[k+1]一定成立(性质1,2)。
POJ2533:Longest Ordered Subsequence(模板题)
题目链接:http://poj.org/problem?id=2533
题目解析:
思想在上面已经介绍很清楚了,敲代码的时候注意二分的写法,注意边界问题,第一次写的时候出了很多错误。
代码:
#include <iostream> #include <string.h> #include <stdio.h> #include <algorithm> #include <math.h> #define eps 1e-9 using namespace std; int n,len,a[1010],d[1010]; int er(int q[],int l,int r,int key)//好好研究二分 { int mid; while(l<=r) { mid=(l+r)/2; if(q[mid]==key) { return mid; } else if(q[mid]>key) { r=mid-1; } else l=mid+1; } return l; } int main() { int we; while(scanf("%d",&n)!=EOF) { for(int i=1; i<=n; i++) { scanf("%d",&a[i]); } len=1; d[len]=a[1]; for(int i=2; i<=n; i++) { if(a[i]>d[len]) { d[++len]=a[i]; } else { we=er(d,1,len,a[i]); d[we]=a[i]; } } printf("%d\n",len); } return 0; }