POJ2891:Strange Way to Express Integers(解一元线性同余方程组)

写一下自己的理解,下面附上转载的:
若a==b(modk);//这里的==指的是同余,我用=表示相等(a%k=b)
a-b=kt(t为整数)
以前理解的错误思想:
以前认为上面的形式+(a-tb=k)也是成立的,今天一想随便就能举出一个反例11==5(mod3)
同样是求这个东西。。
X mod m1=r1
X mod m2=r2
...
...
...
X mod mn=rn

首先,我们看两个式子的情况
X mod m1=r1……………………………………………………………(1)
X mod m2=r2……………………………………………………………(2)
则有
X=m1*k1+r1………………………………………………………………(*)
X=m2*k2+r2
那么 m1*k1+r1=m2*k2+r2
整理,得
m1*k1-m2*k2=r2-r1
令(a,b,x,y,m)=(m1,m2,k1,k2,r2-r1),原式变成
ax+by=m
熟悉吧?

此时,因为GCD(a,b)=1不一定成立,GCD(a,b) | m 也就不一定成立。所以应该先判 若 GCD(a,b) | m 不成立,则!!!方程无解!!!。(即合并的这两个方程组不可能相等,即没有同解X)
否则,继续往下。

解出(x,y),将k1=x反代回(*),得到X。//解出的一组特解(x,y)代入是(1)(2)两个方程所得X是相等的。
于是X就是这两个方程的一个特解,通解就是 X'=X+k*LCM(m1,m2)//(特解为X=x*(c/d)*m1+r1;同解X'=X+(m2/d)*m1*k,=X+lcm(m1,m2)*k)
这个式子再一变形,得 X' mod LCM(m1,m2)=X
这个方程一出来,说明我们实现了(1)(2)两个方程的合并。


转载:
/**********************一般模线性方程组***********************/ 同样是求这个东西。。 X mod m1=r1 X mod m2=r2 ... ... ... X mod mn=rn 首先,我们看两个式子的情况 X mod m1=r1……………………………………………………………(1) X mod m2=r2……………………………………………………………(2) 则有 X=m1*k1+r1………………………………………………………………(*) X=m2*k2+r2 那么 m1*k1+r1=m2*k2+r2 整理,得 m1*k1-m2*k2=r2-r1 令(a,b,x,y,m)=(m1,m2,k1,k2,r2-r1),原式变成 ax+by=m 熟悉吧? 此时,因为GCD(a,b)=1不一定成立,GCD(a,b) | m 也就不一定成立。所以应该先判 若 GCD(a,b) | m 不成立,则!!!方程无解!!!。 否则,继续往下。 解出(x,y),将k1=x反代回(*),得到X。 于是X就是这两个方程的一个特解,通解就是 X'=X+k*LCM(m1,m2) 这个式子再一变形,得 X' mod LCM(m1,m2)=X 这个方程一出来,说明我们实现了(1)(2)两个方程的合并。 令 M=LCM(m1,m2),R=r2-r1 就可将合并后的方程记为 X mod M = R。 然后,扩展到n个方程。 用合并后的方程再来和其他的方程按这样的方式进行合并,最后就能只剩下一个方程 X mod M=R,其中 M=LCM(m1,m2,...,mn)。 那么,X便是原模线性方程组的一个特解,通解为 X'=X+k*M。 如果,要得到X的最小正整数解,就还是原来那个方法: X%=M; if (X<0) X+=M; 这么一来~~大功告成~~

 PS:2015.1.21题目解析:这个算法我没有搞懂,以后只能靠模版了,,囧!!!(希望看完中国剩余定理后能对这里有一个重新的认识)

PS:1.22终于完全搞懂了,好开心,重新解释一下。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
long long a,b,c,n,d;
long long X,Y;
void extend(long long A,long long B,long long &d,long long &x1,long long &y1)
{
    if(B==0)//犯了一个低级失误如果写成long long d的话函数的值传回到主函数
    {
        x1=1;
        y1=0;
        d=A;
        return ;
    }
    extend(B,A%B,d,x1,y1);
    long long temp=x1;
    x1=y1;
    y1=temp-(A/B)*y1;
    return ;
}
int main()
{
    long long a1,r1,a2,r2,i,j;
    while(scanf("%lld",&n)!=EOF)
    {
        bool ifhave=true;
        scanf("%lld%lld",&a1,&r1);
        for(i=2; i<=n; i++)
        {
            scanf("%lld%lld",&a2,&r2);
            a=a1;
            b=a2;
            c=r2-r1;
            extend(a,b,d,X,Y);
            if(c%d)
            {
                ifhave=false;
                break;
            }
            long long t=b/d;
            X=(X*(c/d)%t+t)%t;//最小解
            X=a1*X+r1;//带入原方程求出一个特解X,这个特解同时满足合并的两个方程组,那么通解为X‘=X+(a2/d)*a1*k,即X'=X+lcm(a1,a2)*k;->X'mod lcm(a1,a2)=X;
            //printf("X===%lld\n",X);
            a1=a1*(a2/d);//  即lcm(a1,a2)
            r1=X;                                    //上面证明即为两个方程组的合并
        }
        for(j=i+1; j<=n; j++)
        {
            scanf("%lld%lld",&a2,&r2);
        }
        if(!ifhave)
        {
            printf("-1\n");
            continue;
        }
        printf("%lld\n",X);
    }
    return  0;
}

 

posted @ 2015-01-20 16:34  人艰不拆_zmc  阅读(243)  评论(0编辑  收藏  举报