HDU1757:A Simple Math Problem(矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=1757
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
题目解析:
前面已经写了一篇博客如何构造矩阵,这道题可以说就是上片博客的简单应用。
矩阵的乘法不满足交换律,但是却满足结合律,如:A*B*C=A*(B*C);
f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10)
构造的矩阵是:
|0 1 0 ......... 0| |f0| |f1 |
|0 0 1 0 ...... 0| |f1| |f2 |
|...................1| * |..| = |...|
|a9 a8 .......a0| |f9| |f10|
然后根据矩阵的结合律,可以先把构造的矩阵的K次幂求出来。最后直接求第一个数。
代码:
#include <iostream> #include <string> #include <stdlib.h> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; struct ma { int a[10][10]; } init,res; int K; int mod,b[10],f[10]; ma Mul(ma x,ma y) { ma tmp; for(int i=0; i<10; i++) for(int j=0; j<10; j++) { tmp.a[i][j]=0; for(int k=0; k<10; k++) tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod; } return tmp; } ma Pow(ma x,int K) { ma tmp; for(int i=0; i<10; i++) { for(int j=0; j<10; j++) tmp.a[i][j]=(i==j); } while(K!=0) { if(K&1) tmp=Mul(tmp,x); K>>=1; x=Mul(x,x); } return tmp; } int main() { while(scanf("%d%d",&K,&mod)!=EOF) { for(int i=0; i<=9; i++) { scanf("%d",&init.a[9][9-i]); } if(K<=9) { printf("%d\n",K); continue; } for(int i=0; i<10; i++) f[i]=i; for(int i=0; i<=8; i++) { for(int j=0; j<=9; j++) init.a[i][j]=(i==j-1); } res=Pow(init,K); int ans=0; for(int j=0; j<10; j++) { ans=(ans+res.a[0][j]*j)%mod; } printf("%d\n",ans); } return 0; }
加深印象,写了两次。
#include <iostream> #include <string> #include <stdlib.h> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; struct ma { int a[10][10]; } init,res; int K; int mod,b[10],f[10]; ma Mul(ma x,ma y) { ma tmp; for(int i=0; i<10; i++) for(int j=0; j<10; j++) { tmp.a[i][j]=0; for(int k=0; k<10; k++) tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod; } return tmp; } ma Pow(ma x,int K) { ma tmp; for(int i=0; i<10; i++) { for(int j=0; j<10; j++) tmp.a[i][j]=(i==j); } while(K!=0) { if(K&1) tmp=Mul(tmp,x); K>>=1; x=Mul(x,x); } return tmp; } int main() { while(scanf("%d%d",&K,&mod)!=EOF) { for(int i=0; i<=9; i++) { scanf("%d",&init.a[9][9-i]); } if(K<=9) { printf("%d\n",K); continue; } for(int i=0; i<10; i++) f[i]=i; for(int i=0; i<=8; i++) { for(int j=0; j<=9; j++) init.a[i][j]=(i==j-1); } res=Pow(init,K-9); int ans=0; for(int j=0; j<10; j++) { ans=(ans+(res.a[9][j])*f[j])%mod; } printf("%d\n",ans); } return 0; }