nyoj 349 Sorting It All Out
Sorting It All Out
时间限制:3000 ms | 内存限制:65535 KB
难度:3
描述
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
输入
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
输出
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
样例输入
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
样例输出
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
#include<stdio.h> #include<string.h> int map[27][27],indegree[27],q[27];//indegree为入度,q存放得到的序列 int TopoSort(int n) //拓扑排序 { int c=0,temp[27],loc,m,flag=1,i,j; ////flag=1:有序 flag=-1:不确定,m为入度为0的顶点的个数 for(i=1;i<=n;i++) temp[i]=indegree[i];//复制入度表到temp for(i=1;i<=n;i++) { m=0; for(j=1;j<=n;j++) if(temp[j]==0) { m++; loc=j; } //查找入度为零的顶点个数 if(m==0) return 0; //有环 if(m>1) flag=-1; // 无序 q[c++]=loc; //入度为零的点入队 temp[loc]=-1; for(j=1;j<=n;j++) if(map[loc][j]==1) temp[j]--; } return flag; } int main() { int m,n,i,sign; //当sign=1时,已得出结果 char str[5]; while(scanf("%d%d",&n,&m)) { if(m==0&&n==0) break; memset(map,0,sizeof(map)); memset(indegree,0,sizeof(indegree)); sign=0; for(i=1;i<=m;i++) { scanf("%s",str); if(sign) continue; //一旦得出结果,对后续的输入不做处理 int x=str[0]-'A'+1; int y=str[2]-'A'+1; map[x][y]=1; indegree[y]++; int s=TopoSort(n); if(s==0) //有环 { printf("Inconsistency found after %d relations.\n",i); sign=1; } if(s==1) //有序 { printf("Sorted sequence determined after %d relations: ",i); for(int j=0;j<n;j++) printf("%c",q[j]+'A'-1); printf(".\n"); sign=1; } } if(!sign) //不确定 printf("Sorted sequence cannot be determined.\n"); } return 0; }