元类metaclass
一 知识储备
exec:三个参数 参数一:字符串形式的命令 参数二:全局作用域(字典形式),如果不指定,默认为globals() 参数三:局部作用域(字典形式),如果不指定,默认为locals()
#可以把exec命令的执行当成是一个函数的执行,会将执行期间产生的名字存放于局部名称空间中 g={ 'x':1, 'y':2 } l={} exec(''' global x,z x=100 z=200 m=300 ''',g,l) print(g) #{'x': 100, 'y': 2,'z':200,......} print(l) #{'m': 300}
二 引子(类也是对象)
class Foo: pass f1=Foo() #f1是通过Foo类实例化的对象
python中一切皆是对象,类本身也是一个对象,当使用关键字class的时候,python解释器在加载class的时候就会创建一个对象(这里的对象指的是类而非类的实例),因而我们可以将类当作一个对象去使用,同样满足第一类对象的概念,可以:
-
把类赋值给一个变量
-
把类作为函数参数进行传递
-
把类作为函数的返回值
-
在运行时动态地创建类
上例可以看出f1是由Foo这个类产生的对象,而Foo本身也是对象,那它又是由哪个类产生的呢?
1 #type函数可以查看类型,也可以用来查看对象的类,二者是一样的 2 print(type(f1)) # 输出:<class '__main__.Foo'> 表示,obj 对象由Foo类创建 3 print(type(Foo)) # 输出:<type 'type'>
三 什么是元类?
元类是类的类,是类的模板
元类是用来控制如何创建类的,正如类是创建对象的模板一样,而元类的主要目的是为了控制类的创建行为
元类的实例化的结果为我们用class定义的类,正如类的实例为对象(f1对象是Foo类的一个实例,Foo类是 type 类的一个实例)
type是python的一个内建元类,用来直接控制生成类,python中任何class定义的类其实都是type类实例化的对象
四 创建类的两种方式
方式一:使用class关键字
class Chinese(object): country='China' def __init__(self,name,age): self.name=name self.age=age def talk(self): print('%s is talking' %self.name)
方式二:就是手动模拟class创建类的过程):将创建类的步骤拆分开,手动去创建
#准备工作: #创建类主要分为三部分 1 类名 2 类的父类 3 类体 #类名 class_name='Chinese' #类的父类 class_bases=(object,) #类体 class_body=""" country='China' def __init__(self,name,age): self.name=name self.age=age def talk(self): print('%s is talking' %self.name) """
步骤一(先处理类体->名称空间):类体定义的名字都会存放于类的名称空间中(一个局部的名称空间),我们可以事先定义一个空字典,然后用exec去执行类体的代码(exec产生名称空间的过程与真正的class过程类似,只是后者会将__开头的属性变形),生成类的局部名称空间,即填充字典
class_dic={} exec(class_body,globals(),class_dic) print(class_dic) #{'country': 'China', 'talk': <function talk at 0x101a560c8>, '__init__': <function __init__ at 0x101a56668>}
步骤二:调用元类type(也可以自定义)来产生类Chinense
Foo=type(class_name,class_bases,class_dic) #实例化type得到对象Foo,即我们用class定义的类Foo print(Foo) print(type(Foo)) print(isinstance(Foo,type)) ''' <class '__main__.Chinese'> <class 'type'> True '''
我们看到,type 接收三个参数:
-
第 1 个参数是字符串 ‘Foo’,表示类名
-
第 2 个参数是元组 (object, ),表示所有的父类
-
第 3 个参数是字典,这里是一个空字典,表示没有定义属性和方法
补充:若Foo类有继承,即class Foo(Bar):.... 则等同于type('Foo',(Bar,),{})
五 自定义元类控制类的行为
#一个类没有声明自己的元类,默认他的元类就是type,除了使用元类type,用户也可以通过继承type来自定义元类(顺便我们也可以瞅一瞅元类如何控制类的行为,工作流程是什么)
#知识储备: #产生的新对象 = object.__new__(继承object类的子类) #步骤一:如果说People=type(类名,类的父类们,类的名称空间),那么我们定义元类如下,来控制类的创建 class Mymeta(type): # 继承默认元类的一堆属性 def __init__(self, class_name, class_bases, class_dic): if '__doc__' not in class_dic or not class_dic.get('__doc__').strip(): raise TypeError('必须为类指定文档注释') if not class_name.istitle(): raise TypeError('类名首字母必须大写') super(Mymeta, self).__init__(class_name, class_bases, class_dic) class People(object, metaclass=Mymeta): country = 'China' def __init__(self, name, age): self.name = name self.age = age def talk(self): print('%s is talking' % self.name) #步骤二:如果我们想控制类实例化的行为,那么需要先储备知识__call__方法的使用 class People(object,metaclass=type): def __init__(self,name,age): self.name=name self.age=age def __call__(self, *args, **kwargs): print(self,args,kwargs) # 调用类People,并不会出发__call__ obj=People('egon',18) # 调用对象obj(1,2,3,a=1,b=2,c=3),才会出发对象的绑定方法obj.__call__(1,2,3,a=1,b=2,c=3) obj(1,2,3,a=1,b=2,c=3) #打印:<__main__.People object at 0x10076dd30> (1, 2, 3) {'a': 1, 'b': 2, 'c': 3} #总结:如果说类People是元类type的实例,那么在元类type内肯定也有一个__call__,会在调用People('egon',18)时触发执行,然后返回一个初始化好了的对象obj #步骤三:自定义元类,控制类的调用(即实例化)的过程 class Mymeta(type): #继承默认元类的一堆属性 def __init__(self,class_name,class_bases,class_dic): if not class_name.istitle(): raise TypeError('类名首字母必须大写') super(Mymeta,self).__init__(class_name,class_bases,class_dic) def __call__(self, *args, **kwargs): #self=People print(self,args,kwargs) #<class '__main__.People'> ('egon', 18) {} #1、实例化People,产生空对象obj obj=object.__new__(self) #2、调用People下的函数__init__,初始化obj self.__init__(obj,*args,**kwargs) #3、返回初始化好了的obj return obj class People(object,metaclass=Mymeta): country='China' def __init__(self,name,age): self.name=name self.age=age def talk(self): print('%s is talking' %self.name) obj=People('egon',18) print(obj.__dict__) #{'name': 'egon', 'age': 18} #步骤四: class Mymeta(type): #继承默认元类的一堆属性 def __init__(self,class_name,class_bases,class_dic): if not class_name.istitle(): raise TypeError('类名首字母必须大写') super(Mymeta,self).__init__(class_name,class_bases,class_dic) def __call__(self, *args, **kwargs): #self=People print(self,args,kwargs) #<class '__main__.People'> ('egon', 18) {} #1、调用self,即People下的函数__new__,在该函数内完成:1、产生空对象obj 2、初始化 3、返回obj obj=self.__new__(self,*args,**kwargs) #2、一定记得返回obj,因为实例化People(...)取得就是__call__的返回值 return obj class People(object,metaclass=Mymeta): country='China' def __init__(self,name,age): self.name=name self.age=age def talk(self): print('%s is talking' %self.name) def __new__(cls, *args, **kwargs): obj=object.__new__(cls) cls.__init__(obj,*args,**kwargs) return obj obj=People('egon',18) print(obj.__dict__) #{'name': 'egon', 'age': 18} #步骤五:基于元类实现单例模式 # 单例:即单个实例,指的是同一个类实例化多次的结果指向同一个对象,用于节省内存空间 # 如果我们从配置文件中读取配置来进行实例化,在配置相同的情况下,就没必要重复产生对象浪费内存了 #settings.py文件内容如下 HOST='1.1.1.1' PORT=3306 #方式一:定义一个类方法实现单例模式 import settings class Mysql: __instance=None def __init__(self,host,port): self.host=host self.port=port @classmethod def singleton(cls): if not cls.__instance: cls.__instance=cls(settings.HOST,settings.PORT) return cls.__instance obj1=Mysql('1.1.1.2',3306) obj2=Mysql('1.1.1.3',3307) print(obj1 is obj2) #False obj3=Mysql.singleton() obj4=Mysql.singleton() print(obj3 is obj4) #True #方式二:定制元类实现单例模式 import settings class Mymeta(type): def __init__(self,name,bases,dic): #定义类Mysql时就触发 # 事先先从配置文件中取配置来造一个Mysql的实例出来 self.__instance = object.__new__(self) # 产生对象 self.__init__(self.__instance, settings.HOST, settings.PORT) # 初始化对象 # 上述两步可以合成下面一步 # self.__instance=super().__call__(*args,**kwargs) super().__init__(name,bases,dic) def __call__(self, *args, **kwargs): #Mysql(...)时触发 if args or kwargs: # args或kwargs内有值 obj=object.__new__(self) self.__init__(obj,*args,**kwargs) return obj return self.__instance class Mysql(metaclass=Mymeta): def __init__(self,host,port): self.host=host self.port=port obj1=Mysql() # 没有传值则默认从配置文件中读配置来实例化,所有的实例应该指向一个内存地址 obj2=Mysql() obj3=Mysql() print(obj1 is obj2 is obj3) obj4=Mysql('1.1.1.4',3307) #方式三:定义一个装饰器实现单例模式 import settings def singleton(cls): #cls=Mysql _instance=cls(settings.HOST,settings.PORT) def wrapper(*args,**kwargs): if args or kwargs: obj=cls(*args,**kwargs) return obj return _instance return wrapper @singleton # Mysql=singleton(Mysql) class Mysql: def __init__(self,host,port): self.host=host self.port=port obj1=Mysql() obj2=Mysql() obj3=Mysql() print(obj1 is obj2 is obj3) #True obj4=Mysql('1.1.1.3',3307) obj5=Mysql('1.1.1.4',3308) print(obj3 is obj4) #False
六 再看属性查找
结合python继承的实现原理+元类重新看属性的查找应该是什么样子呢???
在学习完元类后,其实我们用class自定义的类也全都是对象(包括object类本身也是元类type的 一个实例,可以用type(object)查看),我们学习过继承的实现原理,现在如果将下述继承说成是:对象Foo继承对象B,对象B继承对象A,对象A继承对象object
class A(object): n=333 class B(A): n=222 class Foo(B): n=333
于是属性查找应该分成两层,一层是对象层(基于c3算法的MRO)的查找,另外一个层则是类层(即元类)的查找
class Mymeta(type): n=444 def __call__(self, *args, **kwargs): obj = self.__new__(self) # self=Foo # obj = object.__new__(self) # self=Foo self.__init__(obj, *args, **kwargs) return obj class A(object): n=333 # pass class B(A): n=222 # pass class Foo(B,metaclass=Mymeta): # Foo=Mymeta(...) n=111 def __init__(self, x, y): self.x = x self.y = y print(Foo.n) #查找顺序: #1、先对象层:Foo->B->A->object #2、然后元类层:Mymeta->type
我们在元类的__call__中也可以用object.__new__(self)去造对象,先从object自己的名称空间找,由于它没有继承任何其他对象,所有直接找到它的类,object的类也是type,于是也找到type中的__new__,与此时的self.__new__(self)其实查找的最终目标是一样的
但我们还是推荐在__call__中使用self.__new__(self)去创造空对象,因为这种方式会检索Foo->Mymeta->type,我么可以在Foo或Mymeta中定制__new__,而object.__new__则是直接跨过了Foo和Mymeta
七 练习题
练习一:在元类中控制把自定义类的数据属性都变成大写
class Mymetaclass(type): def __new__(cls,name,bases,attrs): update_attrs={} for k,v in attrs.items(): if not callable(v) and not k.startswith('__'): update_attrs[k.upper()]=v else: update_attrs[k]=v return type.__new__(cls,name,bases,update_attrs) class Chinese(metaclass=Mymetaclass): country='China' tag='Legend of the Dragon' #龙的传人 def walk(self): print('%s is walking' %self.name) print(Chinese.__dict__) ''' {'__module__': '__main__', 'COUNTRY': 'China', 'TAG': 'Legend of the Dragon', 'walk': <function Chinese.walk at 0x0000000001E7B950>, '__dict__': <attribute '__dict__' of 'Chinese' objects>, '__weakref__': <attribute '__weakref__' of 'Chinese' objects>, '__doc__': None} '''
练习二:在元类中控制自定义的类无需__init__方法
1.元类帮其完成创建对象,以及初始化操作;
2.要求实例化时传参必须为关键字形式,否则抛出异常TypeError: must use keyword argument
3.key作为用户自定义类产生对象的属性,且所有属性变成大写
class Mymetaclass(type): # def __new__(cls,name,bases,attrs): # update_attrs={} # for k,v in attrs.items(): # if not callable(v) and not k.startswith('__'): # update_attrs[k.upper()]=v # else: # update_attrs[k]=v # return type.__new__(cls,name,bases,update_attrs) def __call__(self, *args, **kwargs): if args: raise TypeError('must use keyword argument for key function') obj = object.__new__(self) #创建对象,self为类Foo for k,v in kwargs.items(): obj.__dict__[k.upper()]=v return obj class Chinese(metaclass=Mymetaclass): country='China' tag='Legend of the Dragon' #龙的传人 def walk(self): print('%s is walking' %self.name) p=Chinese(name='egon',age=18,sex='male') print(p.__dict__)
练习三:在元类中控制自定义的类产生的对象相关的属性全部为隐藏属性
class Mymeta(type): def __init__(self,class_name,class_bases,class_dic): #控制类Foo的创建 super(Mymeta,self).__init__(class_name,class_bases,class_dic) def __call__(self, *args, **kwargs): #控制Foo的调用过程,即Foo对象的产生过程 obj = self.__new__(self) self.__init__(obj, *args, **kwargs) obj.__dict__={'_%s__%s' %(self.__name__,k):v for k,v in obj.__dict__.items()} return obj class Foo(object,metaclass=Mymeta): # Foo=Mymeta(...) def __init__(self, name, age,sex): self.name=name self.age=age self.sex=sex obj=Foo('egon',18,'male') print(obj.__dict__)