有人说这题像游走... 关于游走的思想,他死了... 明明直接从期望dp的角度考虑更简单合理嘛 首先由于是异或运算不妨逐位考虑 对于每一位,设状态$f[i]$表示从第$i$个点到第$n$个点,这一位上是$1$的概率 那么我们按边权讨论转移: 若这条边边权为$1$:$f[i]+=\frac{1-f[t Read More
考虑转化问题:一个点相邻元素中有偶数个$1$等价于一个点与相邻元素异或和为$0$ 于是直接列出异或方程组求解即可 注意由于要求不允许出现全0矩阵,因此如果有自由元直接给成$1$ 贴代码: Read More
很好的一道题,对理解最小割有很大帮助 首先,不难发现本题与网络流24题中的某一道很类似,我们可以先跑一次dp求出每个节点的LIS,然后拆点,拆出的两点之间连流量为删除的代价的边,剩下的点之间按dp的转移连流量正无穷的边,最后跑最小割即为第一问答案 但是第二问有个问题:又引入了一个量要求最小割字典序最 Read More
这题并不是太难 首先题目我们将每个城市拆点,由源点向一端连容量为初始人数的边,由另一端向汇点连容量为最后人数的边,然后按照题目要求从一端向另一端连容量无穷大的边 这样跑出最大流之后我们只需比较这个流量与总人数是否相等就知道是否合法了 至于输出方案,一个点向另一个点的所有流量都会体现在反向边上,因此我 Read More
费用流好题 本题的建图很有意思 正常我们看到棋盘问题应该先对整个棋盘黑白染色构成一个二分图,然后再考虑建图的问题 但是本题题目中已经明确区分了不同的斜线,问题在于怎么保证一个"L"形 因此我们进一步分析:显然柱子应该放在有代价的位置,我们应该由这样的位置向上下左右连边,保证有两个就行 但是这样建图是 Read More
首先题意就是裸的最小割啦 然后考虑如何统计边数 这里有一个trick: 我们设定一个大于$m$的阈值,对于每条边的边权我们乘这个阈值+1后跑最小割,得到的答案除以阈值就是真正的最小割,取模阈值后就是最少割掉的边数 为什么? 我们考虑:设原来的最小割割掉的边权为$v_{1},v_{2}...v_{n} Read More