多项式问题之六——多项式快速幂
问题:已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$满足$G(x)\equiv F(x)^{k}$
这个...你需要多项式exp
直接推一发式子就可以了:
$G(x)\equiv F(x)^{k}$
$G(x)\equiv e^{lnF(x)^{k}}$
$G(x)\equiv e^{klnF(x)}$
这样写个多项式ln和多项式exp就可以了
#include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <queue> #include <stack> #define ll long long #define uint unsigned int using namespace std; const uint mode=998244353; uint ig[(1<<20)+5],Ff[(1<<20)+5],lg[(1<<20)+5],tg[(1<<20)+5]; uint n,k; uint F[(1<<20)+5],lF[(1<<20)+5],G[(1<<20)+5]; uint pow_mul(uint x,uint y) { uint ret=1; while(y) { if(y&1)ret=1ll*ret*x%mode; x=1ll*x*x%mode,y>>=1; } return ret; } uint MOD(uint x,uint y) { return x+y>=mode?x+y-mode:x+y; } uint to[(1<<20)+5]; void NTT(uint *a,int len,int k) { for(int i=0;i<len;i++)if(i<to[i])swap(a[i],a[to[i]]); for(int i=1;i<len;i<<=1) { uint w0=pow_mul(3,(mode-1)/(i<<1)); for(int j=0;j<len;j+=(i<<1)) { uint w=1; for(int o=0;o<i;o++,w=1ll*w*w0%mode) { uint w1=a[j+o],w2=1ll*a[j+o+i]*w%mode; a[j+o]=MOD(w1,w2),a[j+o+i]=(w1+mode-w2)%mode; } } } if(k==-1) { uint Inv=pow_mul(len,mode-2); for(int i=1;i<(len>>1);i++)swap(a[i],a[len-i]); for(int i=0;i<len;i++)a[i]=1ll*a[i]*Inv%mode; } } uint A[(1<<20)+5],B[(1<<20)+5],C[(1<<20)+5]; void mul(uint *f,uint *g,int len) { int lim=1,l=0; while(lim<=2*len)lim<<=1,l++; for(int i=0;i<lim;i++)A[i]=B[i]=0,to[i]=((to[i>>1]>>1)|((i&1)<<(l-1))); for(int i=0;i<len;i++)A[i]=f[i],B[i]=g[i]; NTT(A,lim,1),NTT(B,lim,1); for(int i=0;i<lim;i++)C[i]=1ll*A[i]*B[i]%mode; NTT(C,lim,-1); } void get_inv(uint *f,uint *g,int dep) { if(dep==1) { g[0]=pow_mul(f[0],mode-2); return; } int nxt=(dep+1)>>1; get_inv(f,g,nxt); int lim=1,l=0; while(lim<=2*dep)lim<<=1,l++; for(int i=0;i<lim;i++)A[i]=B[i]=0,to[i]=((to[i>>1]>>1)|((i&1)<<(l-1))); for(int i=0;i<dep;i++)A[i]=f[i]; for(int i=0;i<nxt;i++)B[i]=g[i]; NTT(A,lim,1),NTT(B,lim,1); for(int i=0;i<lim;i++)C[i]=1ll*A[i]*B[i]%mode*B[i]%mode; NTT(C,lim,-1); for(int i=0;i<dep;i++)g[i]=(2*g[i]+mode-C[i])%mode; } void get_ln(uint *f,uint *g,int dep) { for(int i=0;i<dep;i++)ig[i]=0; get_inv(f,ig,dep); for(int i=0;i<dep-1;i++)Ff[i]=1ll*f[i+1]*(i+1)%mode; mul(ig,Ff,dep); for(int i=0;i<dep;i++)g[i+1]=1ll*C[i]*pow_mul(i+1,mode-2)%mode; } void get_exp(uint *f,uint *g,int dep) { if(dep==1) { g[0]=1; return; } int nxt=(dep+1)>>1; get_exp(f,g,nxt); get_ln(g,lg,dep); for(int i=0;i<dep;i++)tg[i]=(f[i]+mode-lg[i])%mode; tg[0]++; mul(tg,g,dep); for(int i=0;i<dep;i++)g[i]=C[i]; } template <typename T>inline void read(T &x) { T f=1,c=0;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=1;ch=getchar();} while(ch>='0'&&ch<='9'){c=MOD((uint)(1ll*c*10%mode),ch-'0');ch=getchar();} x=c*f; } int main() { read(n),read(k); for(int i=0;i<n;i++)read(F[i]); get_ln(F,lF,n); for(int i=0;i<n;i++)lF[i]=1ll*lF[i]*k%mode; get_exp(lF,G,n); for(int i=0;i<n;i++)printf("%u ",G[i]); printf("\n"); return 0; }