多项式问题之一——多项式求逆
问题:
已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$使得$F(x)*G(x)\equiv 1$($mod x^{n}$),所有运算在模998244353意义下进行
怎么搞?
先进行一点分析:
如果$F(x)$只有一项,那么$G(x)$里也只有一项,就是$F(x)$里那项的逆元
那么如果我们已知一个多项式$H(x)$满足$F(x)*H(x)\equiv 1$($mod$ $x^{\frac{n}{2}}$)
很显然,根据要求,同时有:$F(x)*G(x)\equiv 1$($mod$ $x^{\frac{n}{2}}$)
下式减上式,得到:
$F(x)(G(x)-H(x))\equiv 0$($mod$ $x^{\frac{n}{2}}$)
于是有
$G(x)-H(x)\equiv 0$($mod$ $x^{\frac{n}{2}}$)
两边平方,可以得到:
$(G(x)-H(x))^{2}\equiv 0$ ($mod$ $x^{n}$)
展开,得:
$G(x)^{2}+H(x)^{2}-2G(x)H(x)\equiv 0$($mod$ $x^{n}$)
两边乘一个$F(x)$,有:
$F(x)G(x)^{2}+F(x)H(x)^{2}-2F(x)G(x)H(x)\equiv 0$($mod$ $x^{n}$)
根据要求,$F(x)G(x)\equiv 1$($mod$ $x^{n}$)
于是上式可以化简成:
$G(x)+F(x)H(x)^{2}-2H(x)\equiv 0$($mod$ $x^{n}$)
移项,得到:
$G(x)\equiv 2H(x)-F(x)H(x)^{2}$ ($mod$ $x^{n}$)
这样就可以倍增求解了
代码:
#include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <queue> #include <stack> #define ll long long using namespace std; const ll mode=998244353; ll f[100005]; int to[(1<<20)+5]; struct node { ll g[100005]; int len; }now,las; int n; int lim=1,l=0; ll pow_mul(ll x,ll y) { ll ret=1; while(y) { if(y&1)ret=ret*x%mode; x=x*x%mode,y>>=1; } return ret; } void NTT(ll *a,int len,int k) { ll inv=pow_mul(len,mode-2); for(int i=0;i<len;i++)if(i<to[i])swap(a[i],a[to[i]]); for(int i=1;i<len;i<<=1) { ll w0=pow_mul(3,(mode-1)/(i<<1)); for(int j=0;j<len;j+=(i<<1)) { ll w=1; for(int o=0;o<i;o++,w=w*w0%mode) { ll w1=a[j+o],w2=a[j+o+i]*w%mode; a[j+o]=(w1+w2)%mode,a[j+o+i]=((w1-w2)%mode+mode)%mode; } } } if(k==-1) { for(int i=1;i<(len>>1);i++)swap(a[i],a[len-i]); for(int i=0;i<len;i++)a[i]=a[i]*inv%mode; } } ll a[(1<<20)+5],b[(1<<20)+5],c[(1<<20)+5]; void solve(int dep) { if(dep==1) { now.g[0]=pow_mul(f[0],mode-2); now.len=1; las=now; return; } int nxt=(dep+1)/2; solve(nxt); lim=1,l=0; while(lim<=2*dep)lim<<=1,l++; for(int i=1;i<lim;i++)to[i]=((to[i>>1]>>1)|((i&1)<<(l-1))); for(int i=0;i<lim;i++)a[i]=b[i]=0; for(int i=0;i<dep;i++)a[i]=f[i]; for(int i=0;i<nxt;i++)b[i]=las.g[i]; NTT(a,lim,1),NTT(b,lim,1); for(int i=0;i<lim;i++)c[i]=a[i]*b[i]%mode*b[i]%mode; NTT(c,lim,-1); now.len=dep; for(int i=0;i<dep;i++)now.g[i]=((2*las.g[i]-c[i])%mode+mode)%mode; las=now; } int main() { scanf("%d",&n); for(int i=0;i<n;i++)scanf("%lld",&f[i]); solve(n); for(int i=0;i<n;i++)printf("%lld ",now.g[i]); printf("\n"); return 0; }