CF1029E
一个看起来就不对的贪心居然是正解...
但仔细思考一下,这种贪心倒的确找不到反例..
贪心思想:每次找出离根节点最远的点,然后由根节点向这个点的父节点连边,一直连到所有点都能被覆盖即可,这样构造出的一定是一个可行的最优解
正确性证明(个人YY):
主要是要证明这种做法的最优性:
首先,由于所有点都要求被覆盖,自然离根节点最远的点也不例外
那么,如果想覆盖上离根节点最远的点,只会有两种覆盖方法:一种是将根节点与这个点本身相连,另一种是将根节点与这个点的父节点相连
不难发现,将根节点与这个点的父节点相连,这样的方案一定不会差
证明:假设这个父节点还有别的子节点,那么与父节点相连后这些子节点都能被覆盖,这样一定是更优的
而即使这个父节点没有别的子节点,他还有自己的父节点,这样连边也能减少根节点与他的父节点的距离,也会达到更好的效果
即使上面两点都没有起作用,至少这样还可以覆盖上最远的点,也并不会使代价增大,所以这样做是完全可行的。
这样就完事了
(ps:树上bfs真好用)
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
struct Edge
{
int next;
int to;
}edge[400005];
bool used[200005];
int head[200005];
int f[200005];
int n;
int cnt=1;
void init()
{
memset(head,-1,sizeof(head));
cnt=1;
}
void add(int l,int r)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
head[l]=cnt++;
}
struct node
{
int num;
int dep;
}p[200005];
void bfs(int rt)
{
queue <int> M;
p[rt].dep=0;
p[rt].num=rt;
M.push(rt);
while(!M.empty())
{
int u=M.front();
M.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int to=edge[i].to;
if(p[to].dep)
{
continue;
}
p[to].dep=p[u].dep+1;
p[to].num=to;
f[to]=u;
M.push(to);
if(p[to].dep<=2)
{
used[to]=1;
}
}
}
}
bool cmp(node a,node b)
{
return a.dep>b.dep;
}
int main()
{
scanf("%d",&n);
init();
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
bfs(1);
sort(p+1,p+n+1,cmp);
int ans=0;
for(int i=1;i<=n;i++)
{
if(used[p[i].num])
{
continue;
}
ans++;
int u=f[p[i].num];
used[u]=1;
for(int j=head[u];j!=-1;j=edge[j].next)
{
int to=edge[j].to;
used[to]=1;
}
}
printf("%d\n",ans);
return 0;
}