指向指针的指针

一. 回顾指针概念:
今天我们又要学习一个叫做指向另一指针地址的指针。让我们先回顾一下指针的概念吧!
当我们程序如下申明变量:
short int i;
char a;
short int * pi;
程序会在内存某地址空间上为各变量开辟空间,如下图所示。
内存地址→6 7 8 9 10 11 12 13 14 15
-------------------------------------------------------------------------------------
… | | | | | | | | | |
-------------------------------------------------------------------------------------
|short int i |char a| |short int * pi|
图中所示中可看出:
i 变量在内存地址5的位置,占两个字节。
a变量在内存地址7的位置,占一个字节。
pi变量在内存地址9的位置,占两个字节。(注:pi 是指针,我这里指针的宽度只有两个字节,32位系统是四个字节)
接下来如下赋值:
i=50;
pi=&i;
经过上在两句的赋值,变量的内存映象如下:
内存地址→6 7 8 9 10 11 12 13 14 15
--------------------------------------------------------------------------------------
… | 50 | | | 6 | | | |
--------------------------------------------------------------------------------------
|short int i |char a| |short int * pi|
看到没有:短整型指针变量pi的值为6,它就是I变量的内存起始地址。所以,这时当我们对*pi进行读写操作时,其实就是对i变量的读写操作。如:
*pi=5; //就是等价于I=5;
你可以回看本系列的第二篇,那里有更加详细的解说。

二. 指针的地址与指向另一指针地址的指针
在上一节中,我们看到,指针变量本身与其它变量一样也是在某个内存地址中的,如pi的内存起始地址是10。同样的,我们也可能让某个指针指向这个地址。
看下面代码:
short int * * ppi; //这是一个指向指针的指针,注意有两个*号
ppi=π

第一句:short int * * ppi;——申明了一个指针变量ppi,这个ppi是用来存储(或称指向)一个short int * 类型指针变量的地址。
第二句:&pi那就是取pi的地址,ppi=π就是把pi的地址赋给了ppi。即将地址值10赋值给ppi。如下图:
内存地址→6 7 8 9 10 11 12 13 14 15
------------------------------------------------------------------------------------
… | 50 | | | 6 | 10 | |
------------------------------------------------------------------------------------
|short int i|char a| |short int * pi|short int ** ppi|
从图中看出,指针变量ppi的内容就是指针变量pi的起始地址。于是……
ppi的值是多少呢?——10。
*ppi的值是多少呢?——6,即pi的值。
**ppi的值是多少呢?——50,即I的值,也是*pi的值。
呵呵!不用我说太多了,我相信你应明白这种指针了吧!

三. 一个应用实例
1. 设计一个函数:void find1(char array[], char search, char * pi)
要求:这个函数参数中的数组array是以0值为结束的字符串,要求在字符串array中查找字符是参数search里的字符。如果找到,函数通过第三个参数(pa)返回值为array字符串中第一个找到的字符的地址。如果没找到,则为pa为0。
设计:依题意,实现代码如下。
void find1(char [] array, char search, char * pa)
{
    int i;
    for (i=0;*(array+i)!=0;i++)
    {
        if (*(array+i)==search)
        {
            pa=array+i
            break;
        }
        else if (*(array+i)==0)
        {
            pa=0;
            break;
        }
    }
}

你觉得这个函数能实现所要求的功能吗?
调试:
我下面调用这个函数试试。
void main()
{
char str[]={“afsdfsdfdf\0”}; //待查找的字符串
char a=’d’; //设置要查找的字符
char * p=0; //如果查找到后指针p将指向字符串中查找到的第一个字符的地址。
find1(str,a,p); //调用函数以实现所要操作。
if (0==p )
{
printf (“没找到!\n”);//1.如果没找到则输出此句
}
else
{
printf(“找到了,p=%d”,p); //如果找到则输出此句
}
}
分析:
上面代码,你认为会是输出什么呢?
运行试试。
唉!怎么输出的是:没有找到!
而不是:找到了,……。
明明a值为’d’,而str字符串的第四个字符是’d’,应该找得到呀!
再看函数定义处:void find1(char [] array, char search, char * pa)
看调用处:find1(str,a,p);
依我在第五篇的分析方法,函数调用时会对每一个参数进行一个隐含的赋值操作。
整个调用如下:
array=str;
search=a;
pa=p; //请注意:以上三句是调用时隐含的动作。 
   int i;
    for (i=0;*(array+i)!=0;i++)
    {
        if (*(array+i)==search)
        {
            pa=array+i
            break;
        }
        else if (*(array+i)==0)
        {
            pa=0;
            break;
        }
    }

哦!参数pa与参数search的传递并没有什么不同,都是值传递嘛(小语:地址传递其实就是地址值传递嘛)!所以对形参变量pa值(当然值是一个地址值)的修改并不会改变实参变量p值,因此p的值并没有改变(即p的指向并没有被改变)
(如果还有疑问,再看一看《第五篇:函数参数的传递》了。)

 

find1(str,a,p)调用void find1(char [] array, char search, char * pa) ,并传入参数。void find1(char [] array, char search, char * pa)中处理过程:

void find1(char [] array, char search, char * pa)
{
    int i;

    char *_pa;

    _pa=pa;
    for (i=0;*(array+i)!=0;i++)
    {
        if (*(array+i)==search)
        { 
            _pa=array+i
            break;
        }
        else if (*(array+i)==0)
        { 
            _pa=0;
            break;
        }
    }
}

如果没有
    _pa=pa;

这个语句,在函数体内修改了_pa的内容,将会导致参数pa的内容作相应的修改,因为它们指向相同的内存地址。而
    _pa=pa;

这个句,系统重新分配内存给_pa指针,_pa指针指向了系统分配的新地址,函数体内修改的只是_pa的内容,对原pa所指的地址的内容没有任何影响。因此,函数的参数是一个指针时,不要在函数体内部改变指针所指的地址,那样毫无作用,需要修改的只能是指针所指向的内容。即应当把指针当作常量。

 


修正:
void find2(char [] array, char search, char ** ppa)
{
int i;
for (i=0;*(array+i)!=0;i++)
{
if (*(array+i)==search)
{
*ppa=array+i
break;
}
else if (*(array+i)==0)
{
*ppa=0;
break;
}
}
}
主函数的调用处改如下:
find2(str,a,&p); //调用函数以实现所要操作。
再分析:
这样调用函数时的整个操作变成如下:
array=str;
search=a;
ppa=&p; //请注意:以上三句是调用时隐含的动作。
int i;
for (i=0;*(array+i)!=0;i++)
{
if (*(array+i)==search)
{
*ppa=array+i
break;
}
else if (*(array+i)==0)
{
*ppa=0;
break;
}
}
看明白了吗?
ppa指向指针p的地址。
对*ppa的修改就是对p值的修改。
你自行去调试。

经过修改后的程序就可以完成所要的功能了。

 

 

 

另外:

程序1

void myMalloc(char *s) //我想在函数中分配内存,再返回

{

  s=(char *) malloc(100);

}

void main()

{

  char *p=NULL;

  myMalloc(p); //这里的p实际还是NULL,p的值没有改变,为什么?

  if(p) free(p);

}

程序2

void myMalloc(char **s)

{

  *s=(char *) malloc(100);

}

void main()

{

  char *p=NULL;

  myMalloc(&p); //这里的p可以得到正确的值了

  if(p) free(p);

}

程序3

#include<stdio.h>

void fun(int *p)

{

  int b=100;

  p=&b;

}

main()

{

  int a=10;

  int *q;

  q=&a;

  printf("%d\n",*q);

  fun(q);

  printf("%d\n",*q);

  return 0;

}

结果为

10

10

程序4

#include<stdio.h>

void fun(int *p)

{

  *p=100;

}

main()

{

  int a=10;

  int *q;

  q=&a;

  printf("%d\n",*q);

  fun(q);

  printf("%d\n",*q);

  return 0;

}

结果为

10

100

为什么?

---------------------------------------------------------------

1.被分配内存的是行参s,p没有分配内存

2.被分配内存的是行参s指向的指针p,所以分配了内存

---------------------------------------------------------------

不是指针没明白,是函数调用的问题!看看这段:

7-4-1指针参数是如何传递内存的?

     如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

void GetMemory(char *p, int num)

{

     p = (char *)malloc(sizeof(char) * num);

}

void Test(void)

{

     char *str = NULL;

     GetMemory(str, 100);      // str 仍然为 NULL     

     strcpy(str, "hello");      // 运行错误

}

示例7-4-1 试图用指针参数申请动态内存

毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。

如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例7-4-2。

void GetMemory2(char **p, int num)

{

     *p = (char *)malloc(sizeof(char) * num);

}

void Test2(void)

{

     char *str = NULL;

     GetMemory2(&str, 100);      // 注意参数是 &str,而不是str

     strcpy(str, "hello");     

     cout<< str << endl;

     free(str);     

}

示例7-4-2用指向指针的指针申请动态内存

由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例7-4-3。

char *GetMemory3(int num)

{

     char *p = (char *)malloc(sizeof(char) * num);

     return p;

}

void Test3(void)

{

     char *str = NULL;

     str = GetMemory3(100);     

     strcpy(str, "hello");

     cout<< str << endl;

     free(str);     

}

示例7-4-3 用函数返回值来传递动态内存

用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例7-4-4。

char *GetString(void)

{

     char p[] = "hello world";

     return p;      // 编译器将提出警告

}

void Test4(void)

{

char *str = NULL;

str = GetString();      // str 的内容是垃圾

cout<< str << endl;

}

示例7-4-4 return语句返回指向“栈内存”的指针

用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。

如果把示例7-4-4改写成示例7-4-5,会怎么样?

char *GetString2(void)

{

     char *p = "hello world";

     return p;

}

void Test5(void)

{

     char *str = NULL;

     str = GetString2();

     cout<< str << endl;

}

示例7-4-5 return语句返回常量字符串

函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

---------------------------------------------------------------

看看林锐的《高质量的C/C++编程》,上面讲得很清楚的

---------------------------------------------------------------

对于1和2:

如果传入的是一级指针S的话,

那么函数中将使用的是S的拷贝,

要改变S的值,只能传入指向S的指针,即二级指针

---------------------------------------------------------------

程序1:

void myMalloc(char *s) //我想在函数中分配内存,再返回

{

  s=(char *) malloc(100); // s是值参, 函数返回后就回复传递前的数值,无法带回分配的结果

}

这个和调用 void func (int i) {i=1;}; 一样,退出函数体,i指复原的

程序2:void myMalloc(char **s)

{

  *s=(char *) malloc(100); // 这个是可以的

}

等价于

void int func(int * pI) {*pI=1;} pI指针不变,指针指向的数据内容是变化的

值参本身不变,但是值参指向的内存的内容发生了变化。

程序3:

void fun(int *p)

{

  int b=100;

  p=&b;       // 等同于第一个问题, b的地址并没有被返回

}

程序4:

void fun(int *p)

{

  *p=100; // okay

}

 

结论:

1.       函数的返回值是指针类型的,检查是静态内存指针还是堆内存指针还是栈内存指针,栈内存指针是绝对要不得滴!

2.       函数需要使用指针参数进行传入传出的,在函数中只能对指针的指向的值(*p)进行修改,而不能修改指针指向,也就是指针地址!(函数中不得修改指针参数的地址,否则请使用指针的指针!)

 

另外:

 

createNode(BinNode *tree,char *p)
    {
        tree = (BinNode *) malloc(sizeof(BinNode));
        tree->data = *p;
    }
该代码段的意图是通过一个函数创建一个二叉树的节点,然而在,调用该函数后,试图访问该节点结构体的成员时候,却发生了内存访问错误,到底问题出在哪儿呢?

 

一直不明白指针作为函数参数传值的机制,翻开林锐的《高质量C/C++编程指南》,找到了答案。

 

    [如果函数的参数是一个指针,不要指望用该指针去申请动态内存]
   
原来问题出在C编译器原理上:编译器总是要为函数的每个参数制作临时副本,指针参数tree的副本是 _tree,编译器使 _tree = tree。如果函数体内的程序修改了_tree的内容,就导致参数tree的内容作相应的修改。这就是指针可以用作输出参数的原因。
即上面的函数代码经过编译后成为:
    createNode(BinNode *tree,char *p)
    {
        BinNode *_tree;
        _tree = tree;
        _tree = (BinNode *) malloc(sizeof(BinNode));
        _tree->data = *p;
    }
如果没有
    _tree = (BinNode *) malloc(sizeof(BinNode));
这个语句,在函数体内修改了_tree的内容,将会导致参数tree的内容作相应的修改,因为它们指向相同的内存地址。而
    _tree = (BinNode *) malloc(sizeof(BinNode));
这个句,系统重新分配内存给_tree指针,_tree指针指向了系统分配的新地址,函数体内修改的只是_tree的内容,对原tree所指的地址的内容没有任何影响。因此,函数的参数是一个指针时,不要在函数体内部改变指针所指的地址,那样毫无作用,需要修改的只能是指针所指向的内容。即应当把指针当作常量。

 

如果非要使用函数指针来申请内存空间,那么需要使用指向指针的指针
    createNode(BinNode **tree,char *p)
    {
        *tree = (BinNode *) malloc(sizeof(BinNode));
    }
上面的是林锐的说法,目前来说不知道怎么去理解,不过可以有另外的方案,通过函数返回值传递动态内存:
    BinNode *createNode()
    {
        BinNode *tree;
        tree = (BinNode *) malloc(sizeof(BinNode));
        return tree;
    }
这个倒还说得过去,因为函数返回的是一个地址的值,该地址就是申请的内存块首地址。但是,这个容易和另外的一个忠告相混绕
    [不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡]

 

(注意:实际上没有混淆,因为这里tree是在“堆内”分配的内存,而非在“栈”上。)

 

所谓一份拷贝,就是在函数调用时,将参数入栈,我们对形参的任何修改都是修改到
栈上的个拷贝,并不影响我们的实际参数.

 

任何编程语言的参数传递实际上都是在做传值调用.
所谓的传指针,就是把指针指向者的地址(一个值)传进函数.
也就是那个地址被压栈.
然后我们再通过这个地址进行操作,因为实参和形参同样都是一个地址的值.
所以改变形参指向者的状态时,实参指针也能看到这种变化.

 


这里区分一下静态内存,栈内存和动态分配的内存(堆内存)的区别:
(1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

 

因此,试图返回一个栈上分配的内存将会引发未知错误
    char *GetString(void)
    {
        char p[] = "hello world";
        return p; // 编译器将提出警告
    }
p是在栈上分配的内存,函数结束后将会自动释放,p指向的内存区域内容不是"hello world",而是未知的内容。
如果是返回静态存储的内存呢:
    char *GetString(void)
    {
        char *p = "hello world";
        return p;
    }
这里“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString,它返回的始终是同一个“只读”的内存块。
 
[参考:林锐《高质量C/C++编程指南》]

 

#include<iostream>//指向指针的指针
using namespace std;
void GetMemory(char * &p,int num){
 p=(char *)malloc(sizeof(char)*num);
}
void main(void){
 char *str=NULL;
 GetMemory(str,100);
 strcpy(str,"hello");
 cout<<str<<endl;
 free(str);
}

 

或者:

 

#include<iostream>
using namespace std;
void GetMemory(char * *p,int num){
 *p=(char *)malloc(sizeof(char)*num);
}
void main(void){
 char *str=NULL;
 GetMemory(&str,100);
 strcpy(str,"hello");
 cout<<str<<endl;
 free(str);
}

 

以上都是正确的下面的例子是错误的:

 

#include<iostream>
using namespace std;
void GetMemory(char *p,int num){
 p=(char *)malloc(sizeof(char)*num);
}
void main(void){
 char *str=NULL;
 GetMemory(str,100);
 strcpy(str,"hello");
 cout<<str<<endl;
 free(str);
}

 

试图用指针申请动态内存,错误的原因上面已经给出了详细的说明。总而言之,指针作为参数时,不能在函数体中改变指针的内存地址,要不然,实参的拷贝(压入栈中)改变了,而实参没有改变,造成内存泄露并且还达不到预期的效果。上面正确的2个例子都是通过另一种方法绕开了这个问题,改变指针的内容,例如:用了指向指针的指针,给指针的内容改变了,使其变为新分配内存的首地址,从而达到了效果。

 

posted on 2012-06-19 16:00  很多不懂呀。。  阅读(2150)  评论(0编辑  收藏  举报

导航